
3.10 Example: Geodesics on a sphere - paths in φ

we know that for a sphere the only non-zero christoffel symbols are Γθ
φφ =

− sin θ cos θ, and Γφ
θφ = Γφ

φθ = cot θ.
Geodesic paths satisfy the equation

dxA

ds2
+ ΓA

BC

dxB

ds

dxC

ds
= 0

suppose the path s is just a change in φ then s = aφ so there is no dependance
on θ i.e. x1 = θ =constant so dθ/ds = 0 and d2θ/ds2 = 0. While for φ we
have dφ/ds = 1/a and d2φ/ds2 = 0.

the LHS of the geodesic equation in φ is

d2φ

ds2
+ Γφ

BC

dxB

ds

dxC

ds
= 0 + Γφ

θφ

dθ

ds

dφ

ds
+ Γφ

φθ

dφ

ds

dθ

ds
= 0

so this looks good but we have to do BOTH coordinates.
the LHS of the geodesic equation in θ then

d2θ

ds2
+ Γθ

BC

dxB

ds

dxC

ds
=

d2θ

ds2
+ Γθ

φφ

dφ

ds

dφ

ds
= 0 − sin θ0 cos θ0 × 1/a2

this is only equal to 0 i.e. is only a geodesic for the special case of
sin θ0 cos θ0 = 0 i.e. θ0 = 0, π/2, π

0, π are the north and south poles respectively, where a path in φ is just a
point. the only geodesics which involve any distance is the equator - a great
circle like before.

3.11 Easier Christoffel Symbols and geodesic pathss

calculating the Christoffel symbols was utterly tedious. even for the simplest
2D example there was a lot of ’turn the handle’ maths that sooner or later
will go wrong and we’ll drop a term through loss of concentration from being
so bored. And finding geodesics was worse! we were picking parameter curves
to explore as the full generality was so tricky....

An easier way for both (note I didn’t say EASY) is to use the Euler–
Lagrange equations. We could have solved for the geodesics (at least for
matter particles) by saying that these are the paths which give the shortest
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distance between two points, i.e. we are looking for the extremal path which
has

δ
∫

ds = 0

But this is often what we do in classical mechanics, where we look for the
minimum energy path by getting the Lagrangian L = T − V as the sum of
kinetic T and potential V energies, and then finding the minimum energy
path by integrating this over time i.e. δ

∫

Ldt = 0. For geodesics then there
are no potential energy terms so V = 0 so we are looking only at kinetic
energy, so δ

∫

Tdt = 0.
We’ll do it in terms of per unit mass so T = 1/2[(dx/dt)2 + (dy/dt)2 +

(dz/dt)2], or in metric terms (Euclidean 3D non-relativistic flat space)

T =
1

2
gij

dxi

dt

dxj

dt
=

1

2
gijẋ

iẋj =
1

2

(ds

dt

)

2

So the minimum energy condition (Hamiltons principle in classical mechan-
ics) gives

δ
∫

Tdt = δ
∫

(ds

dt

)

2

dt = 0

i.e. this is basically the same as the minimum path requirement which defines
our geodesic which is δ

∫

(ds/dt)dt = 0.
We know that in classical mechamics that the solution with the minimum

energy satisfies the Euler-Lagrange equations i.e.

d

dt

( ∂L

∂ẋi

)

−

∂L

∂xi
= 0

where L = 1/2gijẋ
iẋj . If we wanted we could do long and tedious algebra on

these equations to get the equation for a geodesic path, and it would turn out
to be of the same form as we got before with far less work by doing parallel
transport of a vector i.e.

ẍi + Γi
jkẋ

j ẋk = 0

or, writing it explicitally

d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= 0
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While there are obviously some technical problems in carrying this over
into our 4D spacetime, where the metric is indefinite (can be +ve, 0 or -
ve), if you do it, then it comes out to be the same as above except we
are now going to take our derivative wrt some affine parameter u linearly
related to the invariant path length, s, rather than to the COORDINATE
t. So we could write the geodesic equation as before but where the dot now
stands for derivative wrt the affine parameter u. So the geodesic paths are
ẍα + Γα

βγẋ
β ẋγ = 0.

But then the midstep Euler–Lagrange equations still hold, so we have the
condition that

d

ds

( ∂L

∂ẋα

)

−

∂L

∂xα
= 0

And these equations give us directly the Christoffel symbols by comparison
with the geodesic equations.

3.12 Example on sphere!

geodesic equations are

dxA

ds2
+ ΓA

BC

dxB

ds

dxC

ds
= 0

but the equivalent Euler-Lagrange equations are

d

ds

( ∂L

∂ẋα

)

−

∂L

∂xα
= 0

The E-L equations DON’T involve Christoffel symbols but the geodesic equa-
tions do. Yet both purport to give geodesic paths so both must ultimately
be the same. so for the sphere ds2 = gABdxAdxB = a2dθ2 + a2 sin2 θdφ2 so

L =
1

2
gAB(dxA/ds)(dxB/ds) =

1

2
gABẋAẋB =

1

2
(a2θ̇2 + a2 sin2 θφ̇2)

Do the E-L equation for θ:

d

ds

(∂L

∂θ̇

)

−

∂L

∂θ
= 0
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do each bit separately so ∂L/∂θ̇ = 1

2
a22θ̇ = a2θ̇ and ∂L/∂θ = 1

2
a2φ̇2∂ sin2 θ/∂θ =

a2φ̇2 sin θ cos θ put these into the E-L equation and get

d(a2θ̇)

ds
− a2φ̇2 sin θ cos θ = 0

θ̈ − sin θ cos θφ̇2 = 0

now we compare this with the equivalent geodesic equation

θ̈ + Γθ
BC ẋBẋC = 0

expand out the double sum

θ̈ + Γθ
θθθ̇θ̇ + Γθ

φθφ̇θ̇ + Γθ
θφθ̇φ̇ + Γθ

φφφ̇φ̇ = 0

Equate coefficients and see that Γθ
φφ = − sin θ cos θ and all the rest of the

Γθ
BC = 0!

3.13 equivalence of geodesic and E-L equations

The Euler-Lagrange equations are

d

du

( ∂L

∂ẋc

)

−

∂L

∂xc
= 0

where dot denotes derivative wrt some affine parameter u, L = 1

2
gabẋ

aẋb and
gab is a metric which depends only on position (i.e. xc) and not velocity (i.e.
ẋc where xc denotes any coordinate. do the two bits separately

∂L

∂ẋc
=

∂(1

2
gabẋ

aẋb)

∂ẋc
=

1

2
ẋaẋb ∂gab

∂ẋc
+

1

2
gabẋ

a ∂ẋb

∂ẋc
+

1

2
gabẋ

b ∂ẋa

∂ẋc

= 0 +
1

2
gabẋ

aδb
c +

1

2
gabẋ

bδa
c =

1

2
gacẋ

a +
1

2
gcbẋ

b = gcbẋ
b

∂cL = ∂c(
1

2
gabẋ

aẋb) = 1

2
ẋaẋb∂cgab.

put this into the E-L equations and they become

d

du
(gcbẋ

b) −
1

2
ẋaẋb∂gab

∂xc
= 0
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gcbẍ
b + ẋbdgcb

du
−

1

2
ẋaẋb∂cgab = 0

gcbẍ
b + ẋbẋa∂agcb −

1

2
ẋaẋb∂cgab = 0

gcbẍ
b +

1

2
ẋbẋa∂agcb +

1

2
ẋbẋa∂agcb −

1

2
ẋaẋb∂cgab = 0

but ẋbẋa∂agcb = ẋdẋa∂agcd and ẋbẋa∂agcb = ẋaẋd∂dgca and ẋaẋb∂cgab =
ẋaẋd∂cgad as these are dummy indices so we can relabel them to whatever we
want and now we can get everything in terms of ẋaẋd so

gcbẍ
b +

1

2
ẋdẋa(∂agcd + ∂dgca − ∂cgad) = 0

multiply by the contravariant metric gfc

gfcgcbẍ
b +

1

2
gfc(∂agcd + ∂dgca − ∂cgad)ẋ

dẋa = 0

δf
b ẍb + Γf

adẋ
dẋa = 0

ẍf + Γf
adẋ

dẋa = 0

3.14 Geodesic on a sphere: EL in φ

ds2 = a2dθ2 + a2 sin2 θdφ2

L =
1

2
(a2θ̇2 + a2 sin2 θφ̇2)

E-L equation in φ

d

ds

(∂L

∂φ̇

)

−

∂L

∂φ
= 0

∂L

∂φ̇
= a2 sin2 θφ̇

∂L

∂φ
= 0
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d

ds
(a2 sin2 θφ̇) − 0 = 0

d

ds
(sin2 θφ̇) = 0

d sin2 θ

ds
φ̇ + sin2 θ

dφ̇

ds
= 0

∂(sin2 θ)

∂θ

dθ

ds
φ̇ + sin2 θφ̈ = 0

2 sin θ cos θθ̇φ̇ + sin2 θφ̈ = 0

φ̈ + 2 cot θθ̇φ̇ = 0

so this is how we find geodesic paths using the EL equations.
compare this with the geodesic equation in φ

φ̈ + Γφ
BC ẋBẋC = 0

φ̈ + Γφ
θθθ̇θ̇ + Γφ

θφθ̇φ̇ + Γφ
φθφ̇θ̇ + Γφ

φφφ̇φ̇ = 0

equate coefficiants and read off to see that

Γφ
θφθ̇φ̇ + Γφ

φθφ̇θ̇ = 2 cot θφ̇θ̇

and since Γa
bc = Γa

cb then Γφ
θφ = Γφ

φθ = cot θ
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