
4 Tensor and Physical Curvature

So we’ve done a lot about tensor derivatives, and how this enables us to find
the geodesic paths (= inertial frames, where we can do physics). But we
also needed a way to describe curvature and we are STILL not able to do
that. We’ve seen the metric tensor gab and the Christoffel symbols Γa

bc both
contain all the important information about the space curvature, but that
they both also contain the unimportant information about what coordinates
we are working in. We still need a nice way to quantify curvature so we can
write gravity=curvature. There is one (but it isn’t nice!).

4.1 Riemann Curvature Tensor

Key thing about curvature is that neighbouring geodesics get further apart
(or closer together) at a rate depending on the local curvature. Flat space, no
forces, geodesics are straight lines. The distance between two geodesics then
increases/decreases linearly as a function of path length along the geodesic.
So the second derivative of the distance between them is zero. For curved
space then the geodesics don’t separate linearly - the second derivative will
not be zero, and this gives us a way to quantify the curvature of spacetime.

Take two geodesics γ and γ̃ with coodinates xa(u) and x̃a(u). The distance
between them is ζa(u) = x̃a(u) − xa(u) =. These are geodesics so
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so subtracting the geodesics gives
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Let dot denote derivative with respect to path length, and keep only first
order terms i.e. ignore anything with two ζ terms.

ζ̈a + Γa
bcẋ

bζ̇c + Γa
bcζ̇

bẋc + ∂dΓ
a
bcζ

dẋbẋc = 0

We have this term ζ̈a. We are looking for a tensor equation, and we’d get
something with this term that transformed as a tensor if we had D2ζa/du2.
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So we can substitute our expression for D2ζa/du (which is a tensor) for
d2ζa/du (which is NOT a tensor). and after lots of tedious algebra and index
relabling we get:
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So here we have something which should equal zero if the space is flat, and not
zero if the space is curved. This can all be stuck together into the Riemann
curvature tensor

D2ζa

du2
+ Ra

cbdζ
bẋcẋd = 0

where
Ra

cbd = (Γa
beΓ

e
cd − ∂dΓ

a
bc − Γa

edΓ
e
bc + ∂bΓ

a
dc)

This tensor DOES NOT CARE about coordinate systems. Flat space
has all components of Ra

bcd = 0 irrespective of whether you are working in
spherical polar coordinates or cartesian coordinates. And if all components
are zero then D2ζa/du2 = 0 and ζa = Au + B so geodesics in flat space
separate linearly (or remain parallel if A=0). Geodesics in curved space do
not.

4.2 Symmetry properties of the Riemann curvature

tensor

We could write this out in full but its very long and tedious so instead we are
going to use a trick. We can always define locally geodesic coordinates, those
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in which the metric tensor is given by ηαβ and the Christoffel symbols are
zero, BUT THEIR DERIVATIVES ARE NOT - we can’t transform gravity
away in a global sense. I’d call this the primed frame but the equations
will get very messy. BUT IN WHAT FOLLOWS WE ARE LOOKING AT
THE COMPONENTS OF THE CURVATURE TENSOR IN THE LOCAL
GEODESIC FRAME.

Ra
bcd = ∂cΓ

a
db − ∂dΓ

a
cb

Start with the fully covariant quantity

Rabcd = gaeR
e
bcd

Rabcd = gae[∂cΓ
e
db − ∂dΓ

e
cb]

we can take the gae inside the partial derivatives as in these local geodesic
coordinates then covariant derivative reduces to partial derivative!! this gives

Rabcd = ∂cΓadb − ∂dΓacb

these Christoffel symbols can be written in terms of the derivatives of the
metric (see lecture 7) where we had

2Γabc = ∂bgac + ∂cgba − ∂agbc

so
2Rabcd = ∂c[∂dgab + ∂bgda − ∂agdb] − ∂d[∂cgab + ∂bgca − ∂agcb]

Rabcd =
1

2
(∂c∂bgda − ∂c∂agdb − ∂d∂bgca + ∂d∂agcb)

where we’ve used the fact that gab = gba and that ∂d∂cgab = ∂c∂dgab.
So then we can see that

Rabcd = −Rbacd

Rabcd = −Rabdc

Rabcd = Rcdab

These are TENSOR equations, so must be true in all frames.
But this then shows us that there are a lot of Rabcd = 0 as if we have a

repeated index in the first 2 places then Raacd = −Raacd and the only way
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that a number can be equal to its own negative if if its zero. Similarly for a
repeated index on the last two places Rabcc = −Rabcc = 0.
Cyclic Identity

So you can see that so if we cyclically perturb the covariant indices then
we have

Ra
cdb = ∂dΓ

a
bc − ∂bΓ

a
dc

Ra
dbc = ∂bΓ

a
cd − ∂cΓ

a
bd

so add all these, remembering that christoffel symbols are symmetric

Ra
bcd + Ra

cdb + Ra
dbc = ∂cΓ

a
db − ∂dΓ

a
cb + ∂dΓ

a
bc − ∂bΓ

a
dc + ∂bΓ

a
cd − ∂cΓ

a
bd = 0

But Ra
bcd + Ra

cdb + Ra
dbc = 0 is a TENSOR equation. So even though we

derived it in the local frame, it must be true in ALL frames!
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