Probing the Torus Structure of Nearby AGN

NGC 1068

Ionization cone (aligned with radio jet)

XMM+NuSTAR Spectral fit

ratio

XMM+NuSTAR Spectral fit

keV (Photons cm-2 s-1 keV-1)

ratio

0

1.5×108

2×10⁸

time [s]

2.5×10⁸

3×10⁸

10-5

10-4

Frequency [Hz]

10-3

transmission? **Z_Fe~7-8 Θ=88, Z=1** Model Matt04_1 (fixed) Model Matt04_1 (free) Model Matt04_2 (free) keV (Photons cm-2 s⁻¹ keV⁻¹) keV (Photons cm-2 s-1 keV-1) 10-0 10-3 10-0 1. A 10-4 10-4 10-4 2 2 2 1.5 1.5 ratio 1.5 ratio 50 50 50 20 20 5 10 5 20 Energy (keV) Energy (keV) Energy (keV) **NuSTAR PDS BAT light curve** ē 2×10-3 þ Power x Frequency rate [Crab] ę 10 5

Chandra 0.3-8.0 keV image

XMM+NuSTAR+Chandra (Gal+Nuc) Spectral fit

ratio

XMM+NuSTAR+Chandra (Gal+Nuc) Spectral fit

Component	0.5-2.0 keV	2-5 keV	5-10 keV	10-40 keV
		<2"		
Warm Scattered AGN	0.52 (0.06)	0.55 (0.28)	0.49 (0.12)	0.68 (0.04)
Cold Scattered AGN	0.01 (0.00)	0.22 (0.11)	2.31 (0.55)	12.26 (0.72)
Other (brems + lines)	3.97 (0.42)	0.29 (0.15)	0.27 (0.06)	0.00 (0.00)
Total	4.50 (0.48)	1.06 (0.55)	3.17 (0.76)	12.94 (0.76)
		>2"		
Warm Scattered AGN	0.74 (0.08)	0.44 (0.23)	0.27 (0.06)	0.37 (0.02)
Cold Scattered AGN	0.01 (0.00)	0.11 (0.06)	0.52 (0.12)	3.25 (0.19)
Off-nuclear Pnt Src.	0.20 (0.02)	0.18 (0.09)	0.17 (0.04)	0.45 (0.03)
Other (brems + lines)	4.00 (0.42)	0.13 (0.07)	0.06 (0.01)	0.00 (0.00)
Total >2"	4.92 (0.52)	0.87 (0.45)	1.02 (0.24)	4.07 (0.24)

TABLE 4 FLUX CONTRIBUTION FRACTION

NOTE. - Columns 2-5 are in units of 10⁻¹² erg s⁻¹ cm⁻², with relative fractions of total flux within 75" shown in ()s.

_	XMM-Newton		Chandra	
Line	M04 ti <40''	his work <75''	HETG <2"	ACIS-S 2"-75"
Fe K α	44.3	47.4+1.9	38.9 ^{+3.8}	17.5+3.3
Fe K α CS	8.7	3.8+1.5	4.2+3.0	< 1.5
Fe K β	9.1	8.9+I.I	4.3+3.1	< 5.2
Ni K α	5.6	5.8 ^{+1.8}	< 7.3	< 8.8
Ni K β	3.2	3.1+0.9	<19.8	<16.8
Fe Be-like 6.57 keV	7.6*	8.0+1.5	6.3+2.1	3.9+2.9
Fe He-like 6.69 keV	22.8*	27.8 ^{+1.0}	12.8+3.9	6.1+2.4
Fe H-like 6.97 keV	7.1*	8.2+0.8	7.7+1.5	< 6.1
Ni He-like 7.83 keV	2.7*	$3.9^{+1.1}_{-1.1}$	<10.2	<10.4

TABLE 4 FE AND NI LINE FLUXES (M04 MODEL)

> Bulk of Fe reflection coming from LARGE scales (i.e. > 1pc)

NOT from 0.4-1pc torus wall, as usually (always?) assumed!

MYTorus example. Do we have a problem?

Bulk of Fe coming from lower NH reflection. Bulk of 30 keV hump coming from high NH reflection

Circinus Galaxy

~4 Mpc

Fully CT (N_H>10²⁵ cm⁻²)

Water maser => warped disk + 1.5e6 M_{BH}

> Similar global reflection props as NGC 1068

> Arevalo et al. 2014 (on arXiv a few weeks ago)

Ionization cone (aligned with radio jet) $L_{BOL} = 4e43 \text{ erg/s} \implies 0.2 L_{EDD}$

What about spatial distribution of Reflection?

Circinus Galaxy

NGC 1068

0.3-8.0 keV images

0.3-8.0 keV images

NGC 1068

Fe Kalpha EW (ON)

Fe Kalpha OFF

4 13

. .

1" = 70 pc

CIRCINUS

Fe Kalpha EW (ON)

Fe Kalpha OFF

1" = 19 pc

Fe Kalpha EW images

Circinus Galaxy

NGC 1068

NGC 3393

Koss et al. 2014

Fe Kalpha EW (ON)

Fe Kalpha OFF

MRK 3

Fe Kalpha EW (ON)

Fe Kalpha OFF

Kukula et al. 1999 Crenshaw et al. 2010

INTERESTING TO COMPARE TO HOST DUST

Relative Dec. (arcsec)

Prieto et al. 2014 (arXiv:1405.5653)

Molinari et al. 2011

Conclusions

- Picture shaping up to be that molecular clouds on many scales likely contribute to **clumpy** obscuration.
- Likely a variety of filling factors; probably variety of covering factors too
- Start thinking of the torus as clumpy and comprised of multiple structural components (MIR people already do this, but others need to as well).
- Classical "torus" is not necessarily needed to produce Compton-Thick AGN

- How does this larger scale structure tie into the AGN feeding process?
- How does this structure change as a function of AGN luminosity (e.g., receding torus)?
- How does this larger structure affect our classification schemes?

