



### AGN vs SF 2014 Durham University Obscuration and Star formation in Luminous Quasars

Chien-Ting Chen Dartmouth College

In collaboration with: Ryan C. Hickox, Stacey Alberts, David M. Alexander, Roberto Assef, Michael J.~I. Brown, Agnese Del Moro, William F. Forman, Andrew D. Goulding, Chris Harrison, Christine Jones, Stephen S. Murray, Alexandra Pope, Manolis Rovilos and the Boötes Collaboration

### AGN types and the unification model





Type 1





Antonuucci 1993, Urry & Padovani 1995

### AGN types and the unification model





Type 1





According to the AGN unification model, there should not be any difference in the properties of their host galaxies

Antonuucci 1993, Urry & Padovani 1995

### The AGNvsSF point of view

#### Merger/Starburst

#### (c) Interaction/"Merger"



- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

#### (b) "Small Group"



#### (d) Coalescence/(U)LIRG



- galaxies coalesce: violent relaxation in core
  gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback, but, total stellar mass formed is small

### Hopkins et al. 2008



 BH grows rapidly: briefly dominates luminosity/feedback
 remaining dust/gas expelled

 get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

### unobscured quasar

#### (f) Quasar



 dust removed: now a "traditional" QSO
 host morphology difficult to observe: tidal features fade rapidly
 characteristically blue/young spheroid

#### (g) Decay/K+A



- halo accretes similar-mass companion(s)
- can occur over a wide mass range
  M<sub>balo</sub> still similar to before:
- dynamical friction merges the subhalos efficiently

#### (a) Isolated Disk





Is the origin of obscuration in quasars different than that in Seyferts?

A simple test: the star formation rates in unobscured and obscured quasars





# Mid-IR selected quasars in Boötes

Stern+ '05, Hickox+ '07, '11



563 QSO1s(type I), 361 QSO2s (obscured), 0.7<z<1.8 log Lbol > 45 [erg/s]

# Mid-IR selected quasars in Boötes



Obscured quasars have higher FIR detection fraction (SPIRE 250 micron)





Examples of SED fitting for QSOIs and QSO2s. Blue line: AGN; red line: starburst; green line: stellar population

- 3 empirical stellar population templates (Assef +2008)
- 171 starburst templates (Cary & Elbaz 2001, Dale & Helou 2002, Kirkpatrick +2012)
- AGN templates: Assef+ 2010, Mullaney+ 2011, Netzer+ 2007 (corrected for host galaxy contamination!)
  - Draine 2003 Extinction law (on the AGN templates only)





For individual QSOs without direct SPIRE detections, the stacked fluxes are higher than the best-fitting AGN SEDs by an average of 1.31 dex

### LSF-LAGN correlation for QSO1s and QSO2s





Chen+ 2014 in prep



Hickox et al. 2009

Goulding et al. 2014

### What is the ``intrinsic'' AGN accretion luminosity?



e.g. Alexander+ 2008 Gandhi+ 2009 Goulding+ 2010 Rovilos+ 2013



Fiore+ 2009 Boötes XMM-COSMOS Type I QSO

Chen+ 2014, in prep Lusso+ 2010 Elvis+ 2012

### LSF-LAGN correlation for QSO1s and QSO2s



## LSF-LAGN correlation for QSO1s and QSO2s



#### A comparison with the Hickox et al. 2014 model



# LSF-LAGN correlation for QSO1s and QSO2s

- \* Why are QSO2s hosted by galaxies with higher SF?
- \*  $\log Lsf \propto 0.33 \log Lagn$ :
  - \* Weak correlation in comparison to some studies of local quasars and the Hickox 2014 simple model which assumes a direct connection (log LSF ∝ log LAGN)

### Why are QSO2s hosted by galaxies with higher SF?

# In theoretical models, obscured phase takes place prior to the unobscured phase

#### (d) Coalescence/(U)LIRG



- galaxies coalesce: violent relaxation in core
- gas inflows to center: starburst & buried (X-ray) AGN
- starburst dominates luminosity/feedback, but, total stellar mass formed is small

(e) "Blowout"



- BH grows rapidly: briefly dominates luminosity/feedback
- remaining dust/gas expelled
- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

(f) Quasar



- dust removed: now a "traditional" QSO
- host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

#### (g) Decay/K+A



### Why are QSO2s hosted by galaxies with higher SF?



For the different DM halo masses, QSO2s are hosted by galaxies more massive than QSO1s by 0.13 dex

### Are QSO2s more massive than QSO1s?

- Accurate stellar mass measurements for QSO1s are not available
- Estimate stellar mass from DM halo mass and abundance matching model (Behroozi+ 2013)
- Assuming that QSOs follow the Elbaz+ 2011
  IR main sequence SF galaxy relation
- In each LAGN bin, we can estimate the LSF of normal SF galaxies living in the same DM halo with similar redshift (bootstrapping)



 $sSFR_{\rm MS} [\rm Gyr^{-1}] = 26 \times t_{\rm cosmic}^{-2.2}$ 







- \* No strong LSF-LAGN correlation at moderate- to highredshift quasar sample.
- \* The average log LsF∝0.3 log LAGN is consistent with the SFR evolution of main sequence SF galaxies
- \* DM halo mass difference between QSO1s and QSO2s is not enough to explain the observed LSF difference

# Conclusion

- \* In mid-IR quasars, part of the nuclear obscuration can be associated with the host galaxy star formation (in addition to unification model).
- At moderate redshift, mid-IR
  QSOs have similar LsF and LsF
  evolution similar to that of
  normal SF galaxies, but QSO1
  and QSO2 still show differences.

