Impact of bursty black hole accretion and feedback on host galaxy formation

Colin DeGraf Hebrew University of Jerusalem

Durham AGN Conference July 31, 2014

Outline

- Black Hole Growth
- Impact of Feedback
 - Inflows/Outflows
- Conclusions

- High resolution isolated galaxy run finds periodic bursts of accretion caused by high-density clumps
- What happens with lower-resolution runs?

- Lower-resolution misses peaks in accretion rate
- Bursts reach
 Eddington limit
- Smooth accretion lower by 10-100x

- Lower-resolution misses peaks in accretion rate
- Bursts reach
 Eddington limit
- Smooth accretion lower by 10-100x
- Smooth accretion misses nearly all mass growth

Basic Model using AMR code RAMSES

BH growth follows

$$\dot{M}_{B} = 4 \pi \alpha \frac{(G M_{BH})^{2} \rho}{(c_{s}^{2} + v_{rel}^{2})^{3/2}}$$

BH feedback via thermal coupling: $E_{feedback} = f(\eta Mc^2)$

F=5%, η=10%

Subgrid Model

- Cosmological volume does not resolve highdensity clumps
- Accretion of these clumps can be included as a subgrid model
- Stochastic Process
 - Each timestep has probability of an incoming `clump'
 - Calibrated using isolated galaxy runs with 6pc and 100pc resolutions

- Typical growth behavior
- Consists of 3 general phases
 - 1. Initial sub-Eddington growth
 - 2. Extended Eddington period
 - 3. Regulated phase

Clumps have no effect on accretion during Eddington phase

Pre-Eddington: Clump accretion is important

- Clump accretion grows BH faster at early times
- Initial increase in growth rate compounded by exponential growth
- Clumpy accretion can have significant impact on growth over cosmological scales

Standard Accretion

Standard Accretion

Clumpy Accretion Central region evacuated Inflowing streams disrupted

Standard Accretion

Standard Accretion Minimal heating

Clumpy Accretion Substantial heating inflating asym. bubbles

Standard Accretion

Standard Accretion

Inflows and Outflows

Standard Accretion

Inflows and Outflows

Standard Accretion

Standard Accretion

Out-of-plane component

Standard Accretion

Clumpy Accretion

Stronger feedback from clumpy accretion → outflows much more concentrated out-of-plane

Standard Accretion

Ζ

Inflow/Outflow Interaction

Standard Accretion

Inflow/Outflow Interaction

Smooth accretion: Inflow and outflow show similar sky coverage

Clumpy accretion: Outflow much more widespread → shrink inflow streams

Inflow/Outflow Interaction

At large scale impact of strong feedback is seen more clearly: more widespread outflow and smaller inflows

Conclusions

- Incorporation of clumpy accretion has significant impact of black hole growth
 - Grows faster during early periods
- Morphologically affects the host galaxy
 - Evacuation of central region
- Strong outflows of high-temperature, low density gas driven out of galaxy
 - Outflows up to 10x stronger than in absence of clumpy accretion
 - Only at later times, when black hole has reached (or passed) Eddington growth phase
 - Despite isotropic feedback, AGN-driven outflows primarily out-of-plane
- Inflows also suppressed by outflowing gas/hotter gas halo
 - Only dense inflow streams survive
 - Outer parts of streams are stripped away
- SFR reduced in clumpy accretion model