

BH growth and the impact of AGN feedback on galaxy evolution

Yohan Dubois – Institut d'Astrophysique de Paris (IAP)

Collaborators: Julien Devriendt, Raphaël Gavazzi, Martin Haehnelt, Sébastien Peirani, Christophe Pichon, Joe Silk, Adrianne Slyz, Romain Teyssier, Marta Volonteri

1 Mpc

Horizon-AGN simulation http://horizon-AGN.projet-horizon.fr

The Horizon-AGN simulation

Mass

- Ramses code (AMR) Teyssier (2002)
- L_{box}=100 Mpc/h
- 1024³ DM particles M_{DM,res}=8x10⁷ M_{sun}
- Finest cell resolution dx=1 kpc
- Gas cooling & UV background heating
- Low efficiency star formation
- Stellar winds + SNII + SNIa
- O, Fe, C, N, Si, Mg, H
- AGN feedback radio/quasar

- Dubois et al, 2014
- Welker et al, 2014
- Codis et al, sub.

http://horizon-AGN.projet-horizon.fr

- z=0.6 using 6.7 Mhours on 4096 cores
- 150 000 galaxies per snapshot (> 50 part.)
- 7 billions leaf cells (> Illustris or EAGLE)

Green: gas density / Red: temperature / Blue: metallicity

z=38.305

A visual inspection of the impact of AGN feedback on large-scale structures

Green: gas density / Red: temperature / Blue: metallicity

Without AGN

With AGN

AGN are responsible for turning discs into ellipticals

Central galaxies at z=0 in groups 10¹³<M_{halo}<10¹⁴ M_{sun}

Increasing mass

Dubois, Gavazzi, Peirani, Silk, 2013

Radio mode or quasar mode ?

AGN vs SF

Growing the first bright quasars

Observationnal facts:

- Very bright quasars in the SDSS with z>6 (Willott et al., 2003; Fan et al., 2006; Jiang et al., 2009)

- Detection of a $2.10^9 M_{sun}$ BH at z=7 (Mortlock et al., 2011)

Requirement:

- Need to grow from 10^{5} - 10^{6} M_{sun} up to 10^{9} M_{sun} in less than 700 Myrs ! Eddington limit provides an e-folding time = 45 Myr

Question:

- How to bring gas sufficiently rapidly into the bulge of the galaxy ?

- Direct accretion from the cosmic cold flows (Di Matteo et al., 2012) Cosmological context with large statistics but low resolution (~1kpc)

Versus - Violent disc instabilities (Bournaud et al., 2011) High resolution (1pc) but isolated disc

Growing the first bright quasars

Observationnal facts:

- Very bright guasars in the SDSS with z>6

(Willott et al., 2003; Fan et al., 2006; Jiang et al., 2009)

- Detection of a $2.10^9 M_{sun}$ BH at z=7 (Mortlock et al., 2011)

Requirement:

- Need to grow from 10^5 - $10^6 M_{sun}$ up to $10^9 M_{sun}$ in less than 700 Myrs ! Eddington limit provides an e-folding time = 45 Myr

- How to bring gas sufficiently rapidly into the bulge of

- Direct accretion from the cosmic cold flows (*Di Matteo et al., 2012*) Cosmological context with large statistics but low resolution (~1kpc) *Versus*

- Violent disc instabilities (Bournaud et al., 2011) High resolution (1pc) but isolated disc

Bournaud et al., 2011

2 Mpc/h

Growing the first bright quasars

Cosmological zooms 10 pc resolution

Dubois, Pichon, Haehnelt et al., 2012

- Direct accretion from the cosmic cold flows (*Di Matteo et al., 2012*) Cosmological context with large statistics but low resolution (~1kpc) *Versus*

- Violent disc instabilities (Bournaud et al., 2011) High resolution (1pc) but isolated disc

Growing the first bright quasars

Dubois, Pichon, Haehnelt et al., 2012

A rapid clump migration to trigger « late-time » AGN bursts

29/07/14

AGN vs SF

Dubois, Pichon et al., 2013

AGN quench star formation

Dubois, Pichon et al., 2013

AGN blow cold flows away

Gas is driven out hot from the central galaxy due to AGN.

Cold filaments are repelled from the halo. Their structure is strongly perturbed

BH spin and its consequence on BH growth $spin = a = \frac{J_{\rm BH}}{(GM_{\rm BH}^2/c)}$

- Radiative efficiency depends on the BH spin parameter

- A non-spinning BH has a low radiative efficiency $e_r=0.057$. For a maximally spinning BH with a=0.998 e_r=0.321 (e_r=0.038 if a=-0.998)

29/07/14

BH spin and its consequence on BH growth $spin = a = \frac{J_{BH}}{(GM_{BH}^2/c)}$

- Radiative efficiency depends on the BH spin parameter

- A non-spinning BH has a low radiative efficiency $e_r=0.057$. For a maximally spinning BH with a=0.998 $e_r=0.321$ ($e_r=0.038$ if a=-0.998)

- The spin of BH is inherited from the history of gas accretion and successive mergers.

- Potential issue here: if BHs are maximally spinning then $t_{Edd}(a=0.998)=144$ Myr. Only possible to grow a 10^5 M_{sun} seed BH up to 10^8 M_{sun} in a Gyr (z=6)

15

BH spin evolution through accretion and binary coalescence (in a nutshell)

Figure 2. Schematic illustration of a warped accretion disc. $J_{\rm bh}$ is the angular momentum of the BH ($|J_{\rm bh}| = |a|GM_{\rm bh}^2/c$), $J_{\rm d}$ is the angular momentum of the disc given by Eq. (20) and $J_{\rm tot}$ represents the total angular momentum of the system, $J_{\rm bh} + J_{\rm d}$.

• BH-BH coalescence re-orientates the BH spin and change its amplitude if the mass ratio is large enough.

• The final value depends on the angle between the initial spin and orbital AM of the binary

Two types of evolution: 1- the typical SMBH in a BCG

Large volume cosmological simulation kpc resolution

Dubois, Volonteri, Silk, 2014

29/07/14

Dubois, Volonteri, Silk, 2014

Cranking up the resolution

Strong coherence of gas accretion

29/07/14

AGN vs SF

Going cosmological

$$M_{vir}=10^{12} M_{sun} @ z=2 \& 10 pc resolution$$

Going cosmological

Dubois, Volonteri et al, 2014

BH growth delayed by (too?) efficient SN feedback

redshift 14.0 8.4 6.2 4.9 4.1 3.5 3.1 2.7 2.4 2.2 2.0

100

SL

$$u_{\rm SN} = 1.2 \sqrt{\frac{m_{
m new,s} \eta_{\rm SN} e_{\rm SN}}{m_{
m g}}}$$

 $\simeq 270 \sqrt{\frac{\eta_{\rm SN}}{0.1}} \sqrt{\frac{(m_{
m new,s}/m_{
m g})}{0.1}} \, {
m km \, s^{-1}}$

$$u_{
m esc} = \sqrt{rac{2Gm_{
m cl}}{r_{
m cl}}}~$$
 ~ 300 km s⁻¹

For
$$m_{cl}$$
=10⁹ M_{sun} and r_{cl} =100 pc

Dubois et al., in prep

29/07/14

$$u_{\rm SN} = 1.2 \sqrt{\frac{m_{\rm new,s} \eta_{\rm SN} e_{\rm SN}}{m_{\rm g}}} \qquad u_{\rm SN}$$
$$\simeq 270 \sqrt{\frac{\eta_{\rm SN}}{0.1}} \sqrt{\frac{(m_{\rm new,s}/m_{\rm g})}{0.1}} \,\mathrm{km\,s^{-1}} \quad \mathrm{Fo}$$

$$u_{
m esc} = \sqrt{rac{2Gm_{
m cl}}{r_{
m cl}}}~\sim 300~
m km~s^{-1}$$

For
$$m_{cl}$$
=10⁹ M_{sun} and r_{cl} =100 pc

Dubois et al., in prep

Thank you for your attention

