Observational constraints on the impact of luminous AGN on star formation

Chris Harrison (Durham) Flora Stanley, Jim Mullaney (Sheffield), Dave Alexander, Mark Swinbank

AGN versus Star Formation

Harrison Thesis

Chris Harrison – AGN versus Star Formation @ Durham

31-07-2014

AGN versus Star Formation

Harrison Thesis

AGN versus Star Formation

Harrison Thesis

Where do our observations fit in?

Galaxy-wide ionised outflows found with IFUs

Radio-loud AGN

(e.g., Fu & Stockton 09)

HzRGs

Radio-quiet AGN

(e.g. Humphrey+10; Greene+11; Liu+13)

ULIRG+AGNs

(e.g, Nesvadba+06,08)

(e.g, Alexander+10; Harrison+12a; Westmoquette+12; Rodriguez-Zaurin+13; Rupke & Veilleux 13; Arribas+14)

BUT HOW REPRESENTATIVE ARE THESE OBSERVATIONS?

Constraining the parent population: z<0.4 SDSS AGN

Chris Harrison – AGN versus Star Formation @ Durham

IFU targets from a constrained parent sample

Select luminous (L_[O III]>~10⁴² erg/s), z<0.2, type 2 AGN
 ~45% have significant broad [O III] component (FWHM>700 km/s)
 Select 16 of these for IFU follow-up on Gemini-GMOS

Can place observations into the context of the overall population

Harrison+14

Chris Harrison – AGN versus Star Formation @ Durham

31-07-2014

[O III] emission-line regions

Harrison+14

Spatially extended high-velocity gas

Harrison+14

Galaxy-wide outflows are common

- ~50% of z<0.2 optically luminous type 2 AGN have significant broad [O III] emission-line components (FWHM>700 km/s; SDSS spectra)
- All 16 IFU targets show these components are over kpc scales
- Therefore: expect >>70%(3σ) of all the high-velocity components in the parent sample to be extended on these scales

Properties consistent with models of energy-driven AGN outflows

- □ Kinetic energies: ~0.5-10% of L_{AGN}
- Momentum rates: typically ~10-20 x L_{AGN}/c
- Mass outflow rates: typically ~10 x SFRs (e.g., Hopkins & Elvis 10; Zubovas & King 12; Faucher-Giguere & Quataert 12)

Harrison et al. 2014, MNRAS, 441, 3306

Do luminous AGN have any impact upon SF?

- Outflows could stall in the halo and/or new fuel supplies could reignite activity and star formation
- Outflows may have little effect on *current* star formation

(e.g., Lagos+08; McCarthy+11; Gabor+11,14; Roos+14; Rosas-Guevara+14)

EAGLE: Durham/Leiden consortium (talks later today)

Can we find observational signatures of the impact of luminous AGN on star formation in the global population?

Outflows and feedback in the context of the AGN population

KMOS: prevalence and properties of ionised outflows at high redshift?
 Is there any impact on star formation from luminous AGN?

Carefully constraining SFRs for ~2200 individual AGN

~2200 AGN from Chandra and XMM (COSMOS/CDF-S/CDF-N)
 Photometry from MIR-FIR (IRAC, Spitzer, Herschel).

+ Using de-blended PACS/SPIRE Herschel data (Magnelli+13; Swinbank+14) + Upper limits are derived for all sources not detected

SED fitting to de-compose SF and AGN (following Mullaney+11, Del Moro+13)

+ SFR upper limits determined for sources when insufficient data or when AGN dominated

Use survival analysis to calculate mean SFRs taking into account upper limits.

What do simple model prescriptions predict?

Stanley, Harrison + in prep (poster A10)

- Overall AGN have <SFRs> broadly consistent with non-active star forming galaxies
 Possible up-turn of <SFR> at high L_{AGN}
- Does this mean no suppression? Why are they not correlated?
- We are comparing to various model predictions

Beating down the upper limits with ALMA

Two large ALMA programs (Cycle 1 and Cycle 2; 850um continuum) to get even better SFR constraints for ~100, z~1-3 AGN:

- ALMA 850um data in agreement with our earlier SED-based SFRs
- However, at ALMA depths upper limits can be decreased by a factor of ~1.5-7

Enables us to measure the "quiescent fraction" for high-z X-ray AGN using FIR-derived SFRs.

Mullaney + in prep

- Ionised kpc-scale outflows are extremely common in low-z type 2 quasars
- The mean SFRs of luminous ($L_x > ~ 10^{43-44}$ erg/s) AGN are consistent (or slightly enhanced) compared to lower-luminosity AGN (z~0.2-3.5)
- We have ongoing KMOS and ALMA programs to tie together the properties of outflows in AGN and the impact (or not) of luminous AGN on star formation at high redshift

Mixed results on the SFRs of luminous AGN

Many studies of high-z X-ray AGN have used Herschel to obtain mean SFRs

But what about: AGN contamination, limitation of stacking etc...

Measure SFRs, AGN luminosities, radio properties

MIR-FIR SED fitting
 AGN luminosities: (0.2 – 10) x 10⁴⁵ erg s⁻¹ (mostly quasars)
 SFRs <7 ~ 100 M_o/yr (typical for quasars at this redshift)

SFR as a function of AGN luminosity

What do simple model prescriptions predict?

Even if you assume, when averaged over time, SFRs and AGN luminosities are correlated you need to include a prescription for variability (Hickox+14).
 This introduces a flattening of the relationship, especially at low L_{AGN}

IFU targets: well constrained parent sample

Consider z<0.2, type 2 AGN; luminous (L_[O III] > 5 x 10⁴² erg/s)
 45% of these have significant broad component (FWHM > 700 km/s)

Harrison+14

Comparison to other samples

"Typical" radio luminosities
 High velocity ionised gas is seen over a large luminosity range

Outflow properties vs. AGN, SF, Radio

31-07-2014

Comparing to non-active H II galaxies

Coupling Efficiencies

Outflow rate ~0.5-10% of L(AGN)

Outflow rate >~0.5-40% of L(SF)

However, difficult to explain with SN or Stellar winds alone (following e.g., Leitherer+99)

Coupling Efficiencies: Jets?

~20% - >100% efficiencies required (although see e.g., Wagner+12)

Momentum Rates: AGN

 Momentum rates / [L(AGN)/c] >= 10 on kpc scales
 Consistent with energy-driven AGN outflows (e.g., Faucher-Giguere+12; Zubovas & King 2012; Debuhr+12)

Momentum Rates: Star Formation

High-z ULIRG/AGN: Can the gas escape?

High redshift ULIRGs

Searching for extended, ionised outflows: IFU observations

Chris Harrison – AGN versus Star Formation @ Durham

31-07-2014

Galaxy-wide quasar-driven outflows: models

Have been predicted to :

- Suppress (or enhance) SF;
- Remove low-entropy gas from groups;
- Set M-sigma relationship;
- Re-distribute metals

- What are their observed properties?
- What drives them?
- How common are they?
- What impact do they have?

e.g., Benson+03; Granato+04; King+05,11; Hopkins+06; Bower+08; Ciottii+10; Faucher-Giguere & Quataert 2012; Nayakshin & Zubovas 12; Wagner+13; Bourne+14

5.000 Mp