AGN and Starburst signatures in the midand far-IR

In collaboration with Antonio Hernán-Caballero¹, Anna Feltre² ¹Instituto de Fisica de Cantabria ²Institut d'Astrophysique de Paris

HERMES

AGN vs Star formation, Durham, 28 July - 1 August, 2014

Facts and other stubborn things

- M σ relation (Magorrian et al. 1998; Ferarrese & Merritt 2000; Tremaine et al. 2002; Häring & Rix 2004; Gültekin et al. 2009 + another 10⁸ references)
- Quasar number density vs SFR history (Boyle & Terlevich 1998; Heavens et al. 2004; Richards et al. 2006 etc)
- ▶ Molecular outflows (e.g. Sturm et al. 2011; Brusa et al. 2014)
- Feedback necessary to suppress SF in massive galaxies in cosmological simulations (Blandford & Rees 1974; Zanni et al. 2005; Wagner & Bicknell 2011; Di Matteo et al. 2005; Bower et al. 2006; Croton et al. 2006; Booth & Schaye 2009 + many more)

- 1) What is an AGN- or SB-dominated system when both phenomena are present? (6)
- 2) Are star-forming galaxies aware of the presence of an active nucleus in their centre? (3)

The HerMES/IRS sample¹

Band	Detections
IRAC 3.6 & 4.5 μ m, MIPS 24 μ m	100%
IRAC 5.8 & 8.0µm	90%
MIPS 70µm / MIPS 160µm	77% / $43%$
SPIRE 350μm (3σ)	98% (72%)
SPIRE 500μm (3σ)	84% (35%)
SDSS ugriz	73%

> 375 sources detected at > 3σ at 250 µm
> in the northern HerMES² fields (Bootes, FLS, Lockman, EN1)
> with low-res IRS spectra³
> with reliable spectroscopic redshift measurements (optical or IRS)

¹Feltre et al., MNRAS, 434, 2426 (2013) ²HerMES; <u>http://hermes.sussex.ac.uk</u> ³CASSIS; <u>http://cassis.astro.cornell.edu/atlas</u>

The HerMES/IRS sample¹

Band	Detections
IRAC 3.6 & 4.5µm, MIPS 24µm	100%
IRAC 5.8 & 8.0µm	90%
MIPS 70µm / MIPS 160µm	77% / $43%$
SPIRE 350μm (3σ)	98% (72%)
SPIRE 500μm (3σ)	84% (35%)
SDSS ugriz	73%

¹Feltre et al., MNRAS, 434, 2426 (2013) ²HerMES; <u>http://hermes.sussex.ac.uk</u> ³CASSIS; <u>http://cassis.astro.cornell.edu/atlas</u>

Representative of the IR-bright HerMES population, includes strong MIR AGN or SB emitters; excludes early-type, passively evolving, dust-free galaxies

► EW_{PAH} (6.2µm, 11.3µm)

 $L_{PAH} \Rightarrow SFR_{PAH}$

► EW_{PAH} (6.2µm, 11.3µm)

 $L_{PAH} \Rightarrow SFR_{PAH}$

► EW_{PAH} (6.2µm, 11.3µm)

 $L_{PAH} \Rightarrow SFR_{PAH}$

 $\blacktriangleright \overline{E}W_{PAH}$ (6.2µm, 11.3µm)

 $L_{PAH} \Rightarrow SFR_{PAH}$

Hernán-Caballero, in prep

▶ f_{AGN} [L(5-15µm)]

e.g. Spoon et al. 2007; Smith et al. 2007; Hernán-Caballero et al. 2009, Wu et al. 2010

SED fitting (or everybody's favourite)

AGN indicators in MIR and FIR

An "AGN-dominated" system is wavelength- and method-dependent

e.g. Serjeant & Hatziminaoglou 2009; Hatziminaoglou et al. 2010; Serjeant et al. 2010; Bonfield et al. 2011

e.g. Serjeant & Hatziminaoglou 2009; Hatziminaoglou et al. 2010; Serjeant et al. 2010; Bonfield et al. 2011

e.g. Serjeant & Hatziminaoglou 2009; Hatziminaoglou et al. 2010; Serjeant et al. 2010; Bonfield et al. 2011

e.g. Serjeant & Hatziminaoglou 2009; Hatziminaoglou et al. 2010; Serjeant et al. 2010; Bonfield et al. 2011

Schweitzer et al. 2006; Netzer et al. 2007; Lutz et al. 2008; Armus et al. 2007; Brandl et al. 2006; Smith et al. 2007; Pope et al. 2008; Fadda et al. 2010

e.g. Serjeant & Hatziminaoglou 2009; Hatziminaoglou et al. 2010; Serjeant et al. 2010; Bonfield et al. 2011

Feltre et al. 2013

Schweitzer et al. 2006; Netzer et al. 2007; Lutz et al. 2008; Armus et al. 2007; Brandl et al. 2006; Smith et al. 2007; Pope et al. 2008; Fadda et al. 2010

Lutz et al. 2008 report a constant L_{PAH}/L_{SB} ratio over > 4 orders of magnitude in L_{SB} on a sample of local ULIRGs. *Wu et al. 2010* observe a slight decrease.

Lutz et al. 2008 report a constant L_{PAH}/L_{SB} ratio over > 4 orders of magnitude in L_{SB} on a sample of local ULIRGs. *Wu et al. 2010* observe a slight decrease.

PAH features not affected by $L_{acc} \Rightarrow most$ likely hiding behind high column densities \Rightarrow AGN cannot heat the dust at large distances.

Variations in the environment of SF regions

Lutz et al. 2008 report a constant L_{PAH}/L_{SB} ratio over > 4 orders of magnitude in L_{SB} on a sample of local ULIRGs. *Wu et al. 2010* observe a slight decrease.

PAH features not affected by $L_{acc} \Rightarrow most$ likely hiding behind high column densities \Rightarrow AGN cannot heat the dust at large distances.

Variations in the environment of SF regions

Single-T modified BB (*Fritz et al. 2012*) but range of temperatures consistent with multi-T approach (*e.g. Kirkpatrick et al. 2012*).

Lutz et al. 2008 report a constant L_{PAH}/L_{SB} ratio over > 4 orders of magnitude in L_{SB} on a sample of local ULIRGs. *Wu et al. 2010* observe a slight decrease.

PAH features not affected by $L_{acc} \Rightarrow most$ likely hiding behind high column densities \Rightarrow AGN cannot heat the dust at large distances.

Variations in the environment of SF regions

Single-T modified BB (*Fritz et al. 2012*) but range of temperatures consistent with multi-T approach (*e.g. Kirkpatrick et al. 2012*).

Hot and cold dust components

Hot and cold dust components

Fraction of gas funnelled to the AGN is not constant; consistent with a short feedback phase

The take aways

- AGN and SF co-exist in a variety of sources, spanning several orders of magnitude in both L_{acc} and L_{SB}
- The definition of an AGN- (SB-) dominated system is method- and wavelength-dependent but AGN rarely contribute >50% to L_{IR}
- The Lace does not affect the SFR estimates
- ► SFR_{FIR} and SFR_{PAH} can be used interchangeably for SB-dominated objects
- No robust evidence that the temperature of the cold dust is affected by the AGN
- The gravitational effects that drive SF do not divert a fixed fraction of gas to the centre
- No real evidence of impact of the AGN on the SF of the host: consistent with very brief feedback phase, averaged observed effect on IR samples