The SF-AGN connection: Does AGN activity follow or prevent star formation?

Ryan C. Hickox

AGN vs. Star Formation: The Fate of the Gas in Galaxies Durham, UK 28 July 2014

NGC4258

A wide variety of active galactic nuclei

NGC4151

Astronomy Reviews Model curves courtesy A. Merloni

Accretion state changes with Eddington ratio

Also strongly affected by host galaxy contamination and other selection effects: Hopkins et al. (2009)

Do AGN follow star formation in galaxies?

Mrk 231

Higher fraction of AGN among more strongly star-forming systems (e.g., Kim et al. 1998, Veilleux et al. 1999, Tran et al. 2001)

A common cold gas supply?

Do AGN prevent star formation in galaxies?

AGN can be energetically dominant?

HCG 62 (Gitti et al. 2010), see many others for similar examples

Do AGN follow star formation?

OR

Do AGN prevent star formation?

Do AGN follow star formation? OR

Do AGN prevent star formation?

Do AGN follow star formation in galaxies?

Mrk 231

Higher fraction of AGN among more strongly star-forming systems (e.g., Kim et al. 1998, Veilleux et al. 1999, Tran et al. 2001)

A common cold gas supply?

AGN variability means this is largely a **statistical** problem!

Hickox et al. (2014)

BH-galaxy correlations

Gultekin et al. (2009); see Kormendy & Ho (2013)

Cosmic evolution of star formation and BH growth

What galaxies host AGN?

SDSS narrow-line AGN

What galaxies host AGN?

Hickox et al. (2009)

See also:

X-ray (e.g., Nandra et al. 2007, Silverman et al. 2007, Alonso-Hererro et al. 2008, Georgakakis et al. 2008, Schawinski et al. 2009, Cardamone et al. 2010, Xue et al. 2010) optical (Kauffmann & Heckman 2009, Schawinski et al. 2010) and infrared (Goulding et al. 2009)

SF galaxies have systematically higher Eddington ratios

Kaufmann & Heckman (2009)

SDSS narrow-line AGN

SF galaxies have systematically higher Eddington ratios

Kaufmann & Heckman (2009)

SDSS narrow-line AGN

SF galaxies have systematically **higher** Eddington ratios

[Azadi talk]

Azadi et al. (2014)

Disentangling AGN and star formation signatures is a **challenge!**

More direct measures of galaxy star formation rates with *Herschel*

More direct measures of galaxy star formation rates with *Herschel*

More rapidly SF galaxies are more likely to host an AGN

Rafferty et al. (2011), Rosario et al. (2013), and many others

[Juneau talk]

BH growth (sBHAR) evolves like galaxy growth (sSFR)

Mullaney, et al. (2012b) see also Aird et al. (2012; 2013), Bongiorno et al. (2012); Rosario et al. (2013b). Stanely et al (2014)

Higher star formation rates and gas masses for AGN than in mass-color matched galaxies

BH accretion strongly correlated with **nuclear star formation** for individual AGN

[Shimizu talk]

Esquej et al. (2014); see also Diamond-Stanic et al. (2012); LaMassa et al. (2013)

Global SFR is correlated with average BHAR

BUT for typical AGN: small or zero difference between AGN hosts and "normal" galaxies? •SFRs

Optical colors

Xue et al. (2010)

see also Cardamone et al. (2010), others...

Clustering

Hickox et al. (2009); Coil et al. (2009); many others

Mullaney et al. (2012a), see also Rosario et al. (2013a,b)

Morphologies

Kocevski et al. (2012); see also Georgakakis et al. (2009); Cisternas et al. (2010); Schawinski et al. (2011); and others

BUT: Weak correlation between AGN luminosity and SF?

Host AGN SFRs rise with redshift like the **SF main sequence?**

observed AGN luminosity →

[Rosario talk, Stanley poster, Matsuoka poster, Woo poster]

Stanley et al. (in prep)

Importance of AGN variability

Hickox et al. (2014)

Hanny's Voorwerp

Muno et al. (2007), Ponti et al. (2010)

Schawinski et al. (2011), Keel et al. (2011)

What does it mean for an AGN to be "on"?

A fluorescent bulb at 1000 frames per second (http://www.youtube.com/watch?v=5pNtjOYkAbA)

Variation over many orders of magnitude

Hickox et al. (2014)

observed star formation rate \rightarrow

observed star formation rate \rightarrow

Rosario et al. (2012)

Rosario et al. (2012)

Υ average star formation rate

observed AGN luminosity →

See poster by Stanley

Connection to **mergers**

SF merger fractions from Kartaltepe et al. (2012) AGN data from Treister et al. (2012)

Hickox et al. (2014)

Modeling the AGN luminosity function

How about radiatively-driven feedback?

Powerful radiatively-driven feedback

Harrison et al. (2012)

No significant effect on high-z star-forming galaxies?

Gabor & Bournaud (2014), Roos et al. (2014)

But positive feedback from AGN may trigger SF?

(e.g., Zubovas et al. 2013,

Nayakshin et al. 2013)

Do AGN follow star formation in galaxies?

Mrk 231

YES

for the bulk of star formation and BH growth, when averaging over variability on timescales

Do AGN prevent star formation in galaxies?

HCG 62 (Gitti et al. 2010), see many others for similar examples

AGN and galaxy colors

AGN and galaxy colors

AGN and galaxy colors

 $M_{\rm halo} \sim 10^{13} M_{\odot}$

The need for black hole feedback

More luminous → Blanton (2006)

The need for black hole feedback

The need for black hole feedback

Hickox et al. (2009)

[Gurkan Uygun poster]

Goulding, RCH et al. (2014)

Spatial clustering tell us dark matter halo mass

I

See refs in Hickox et al. (2011, 2012), although see Magliocchetti et al. (2014)

Does this actually work?

Cooling of hot atmospheres appears balanced by PdV work on cavities

State of cluster/group gas is correlated with BCG properties

McNamara & Nulsen (2012) for review

YES

for mechanical outflows in massive galaxies and halos

HCG 62 (Gitti et al. 2010), see many others for similar examples

Do AGN prevent star formation in galaxies?

Do AGN follow star formation?

OR

Do AGN prevent star formation?

Do AGN follow star formation?

Do AGN prevent star formation?

YES

depending on evolutionary stage (and thus halo mass) and mode of accretion galaxy/black hole/halo mass

AGN **follow** star formation in low-mass, cold gas-rich halos

AGN prevent cooling flows and star formation in massive halos

Understanding of the population must take into account stochastic **variability**

Goulding et al. (2014)