Insights on the AGN-Galaxy Connection at z~2 from CANDELS

Dale Kocevski

Colby College / University of Kentucky

with

Paul Nandra, Murray Brightman, Phil Hopkins, Guillermo Barro, and the CANDELS Collaboration

CANDELS and the AGN-Galaxy Connection

- Using host morphologies to determine mechanisms that fuel AGN activity and Black Hole growth at z~2.
- Using host stellar populations to study the connection between AGN and quenching at z~2-3.

CANDELS and the AGN-Galaxy Connection

- * What triggers AGN activity at z~2? Using host morphologies to determine mechanisms that fuel BH growth.
- What role do AGN play in quenching first generation of passive galaxies?
 Using host stellar populations to study SF shutdown in AGN hosts at z~2-3.

ACS

WFC3

н

Redshift Evolution of AGN Fueling Modes

Hopkins & Hernquist (2006)

- * Two fueling modes: merger-driven accretion & stochastic accretion
- Frequency of merger-driven accretion evolves rapidly with redshift.
 At z~2, mergers expected to be dominant fueling mode.

AGN Host Morphologies at z~2

- Most X-ray selected AGN at z~2 are not found in interacting galaxies.
- High disk fraction suggests stochastic fueling more important than predicted by fueling models.
- In agreement with previous results:
 - * Grogin et al. (2005)
 - * Cisternas et al. (2011)
 - * Schawinski et al. (2011)

New Constraints for AGN Fueling Models

Do We Expect Most AGN to Live in Disks?

Philip F. Hopkins¹*, Dale D. Kocevski², Kevin Bundy³

¹Department of Astronomy, University of California Berkeley, Berkeley, CA 94720

² University of California Observatories/Lick Observatory, and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 USA ³ Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwanoha 5-1-5, Kashiwashi, Chiba 277-8568, Japan

Submitted to MNRAS, January, 2013

ABSTRACT

Recent observations have indicated that a large fraction of the low to intermediate luminosity AGN population lives in disk-dominated hosts, while the more luminous quasars live in bulge-dominated hosts (that may or may not be major merger remnants), in conflict with some previous model predictions. We there-

- High gas fractions at z~2 results in ubiquitous AGN activity in undisturbed disk galaxies.
- * Bulk of Black Hole growth should still be driven by mergers.

New Constraints for AGN Fueling Models

-2

-6

-8

log(Φ) [Mpc⁻³ log⁻¹(L_{bol})]

- High gas fractions at z~2 results in ubiquitous AGN activity in undisturbed disk galaxies.
- * Bulk of Black Hole growth should still be driven by mergers.

Host Morphology vs Obscuration

- Heavily obscured, Compton-thick AGN identified by their 'reflection dominated' X-ray spectra.
- * Host Morphology Comparison:
 - * 121 Heavily Obscured AGN with $N_H > 10^{23.5} \text{ cm}^{-2}$
 - * 279 Moderately Obscured AGN with $N_{H} = 10^{22 23.5} \text{ cm}^{-2}$
 - 281 Unobscured AGN
 with N_H < 10²² cm⁻²

Host Morphology vs Obscuration

- Heavily obscured, Compton-thick AGN identified by their 'reflection dominated' X-ray spectra.
- * Host Morphology Comparison:
 - * 121 Heavily Obscured AGN with $N_H > 10^{23.5} \text{ cm}^{-2}$
 - * 279 Moderately Obscured AGN with $N_{H} = 10^{22 23.5} \text{ cm}^{-2}$
 - * 281 Unobscured AGN with $N_{H} < 10^{22} \text{ cm}^{-2}$

Mergers Hidden by Obscuration?

26

Host Morphology vs Obscuration

Kocevski et al. (2014)

Mergers Hidden by Obscuration?

X-ray

Excess of disturbed morphs vs * obscuration consistent with evolutionary sequence.

Heavily

Obscured

AGN

Typical X-ray

Selected

AGN

Incompleteness at high obscuration * may explain lack of convincing AGN-merger connection.

What Triggers AGN Activity at z~2?

- High gas fractions at z~2 means secular processes more important than previously expected. High disk fraction consistent with updated fueling models.
- Heavily obscured AGN are more disturbed than their unobscured counterparts at fixed luminosity.
- Conclusion: Many luminous AGN in disks + incompleteness at high obscuration may explain lack of convincing AGN-merger connection at z~2.

- Quenched galaxies at z~2 are substantially more compact than present day counterparts.
- Quenching pathway: galaxies need to shrink in size and reduce their star formation activity.
- CANDELS has identified the compact star forming progenitors of the "Red Nugget" population: Barro et al. (2013)

- Quenched galaxies at z~2 are substantially more compact than present day counterparts.
- Quenching pathway: galaxies need to shrink in size and reduce their star formation activity.
- CANDELS has identified the compact star forming progenitors of the "Red Nugget" population: Barro et al. (2013)

CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT $z\sim2$

GUILLERMO BARRO¹, S. M. FABER¹, PABLO G. PÉREZ-GONZÁLEZ^{2,3}, DAVID C. KOO¹, CHRISTINA C. WILLIAMS⁴,
DALE D. KOCEVSKI¹, JONATHAN R. TRUMP¹, MARK MOZENA¹, ELIZABETH MCGRATH¹, ARJEN VAN DER WEL⁵, STIJN WUYTS⁶, ERIC F. BELL⁷, DARREN J. CROTON⁸, CEVERINO DANIEL⁹, AVISHAI DEKEL⁹, M. L. N. ASHBY¹⁰, EDMOND CHEUNG¹,
HENRY C. FERGUSON¹¹, ADRIANO FONTANA¹², JEROME FANG¹, MAURO GIAVALISCO⁴, NORMAN A. GROGIN¹¹, YICHENG GUO^{1,4},
NIMISH P. HATHI¹³, PHILIP F. HOPKINS¹⁴, KUANG-HAN HUANG¹¹, ANTON M. KOEKEMOER¹¹, JEYHAN S. KARTALTEPE¹⁵,
KYOUNG-SOO LEE¹⁶, JEFFREY A. NEWMAN¹⁷, LAUREN A. PORTER¹⁸, JOEL R. PRIMACK¹⁸, RUSSELL E. RYAN¹¹,
DAVID ROSARIO⁶, RACHEL S. SOMERVILLE¹⁹, MARA SALVATO⁶, AND LI-TING HSU⁶

Fast-Track Quenching

Courtesy Joel Primack & Lauren Porter

X-ray AGN Fraction: 48%

- At log M > 10, large fraction (48%) of compact, star forming galaxies host an X-ray luminous AGN.
- First generation of quenched galaxies emerged directly following a phase of rapid Black Hole growth.
- Hints at possible role of AGN feedback in the quenching process.

Summary

- High disk fraction at z~2 consistent with updated fueling models & high gas fractions. (Hopkins et al. 2014).
- Increasing fraction of disturbed host morphologies vs AGN obscuration (Kocevski et al. 2014a).
- CANDELS has identified the compact star forming progenitors of the first quenched galaxies (Barro et al. 2013).
- High fraction of AGN activity (48%) detected along the fast-track quenching pathway at z~2 (Kocevski et al. 2014b).

Future Work: UDS XVP Survey

- * Accepted Cycle 16 Chandra X-ray Visionary Project.
- * 1.25 Msec covering 22'x22' SEDS area in UKIDSS/UDS.
- * Average exposure of 700 ksec in CANDELS region.
- * Science Goals:
 - * Nature of BH seeds at $z\sim6-10$ via cross-correlating X-ray and IR backgrounds.
 - * Host properties of Compton-thick AGN selected via spectral modeling.

