Double yolk galaxies: late-stage galaxy mergers in COSMOS

Claire Lackner
Kavli IPMU (WPI)
University of Tokyo

July 2014

Introduction

1. Finding late-stage mergers Median filtering Sample from COSMOS

Merger rates
AGN fraction
Star formation rates

Introduction

1. Finding late-stage mergers

Median filtering
Sample from COSMOS
2. Properties of late-stage mergers Merger rates AGN fraction
Star formation rates

Median Ring Filtering Detection Algorithm

Median Ring Filtering Detection Algorithm

Median Ring Filtering Detection Algorithm

Median ring filter smooths on scales <1.3× PSF FWHM. Peaks are distinguishable in difference image.

Median Ring Filtering Detection Algorithm

Median ring filter smooths on scales $<1.3 \times$ PSF FWHM. Peaks are distinguishable in difference image.

Median Ring Filtering Detection Algorithm

Median ring filter smooths on scales $<1.3 \times$ PSF FWHM. Peaks are distinguishable in difference image.

Median Ring Filtering Detection Algorithm

Median ring filter smooths on scales $<1.3 \times$ PSF FWHM. Peaks are distinguishable in difference image.

Sample from COSMOS

- Parent sample: 44,000 galaxies
- Redshift range: $0.2<z<1.0$ (photo-z from llbert, 2013)
- Magnitude limit: $m_{F W 814}<23$
- Method applied to HST/ACS images (0.03"/pixel)
- Physical separation limited between 2.2 and 8 kpc
- 1547 late-stage merger candidates
- $\sim 5 \%$ of massive galaxies $\left(\log M_{*} / M_{\odot}>10.6\right)$ are late-stage mergers

Late-Stage Mergers from COSMOS

$z=0.75$

Testing with Mock Merger Images

- Postage stamps for two galaxies co-added to make mock merger images
- Pair members have similar photo-zs
- Co-added at fixed separations
- Cannot account for structure changes due to merger

Testing with Mock Merger Images

- Postage stamps for two galaxies co-added to make mock merger images
- Pair members have similar photo-zs
- Co-added at fixed separations
- Cannot account for structure changes due to merger

Completeness

as a function of redshift

as a function of separation

Finding a merger depends strongly on the morphology of the constituent galaxies.

Contamination

- Contamination from chance superpositions, star-forming regions, disks with dust lanes, minor mergers
- Use flux ratio limits and detection thresholds to eliminate contamination

Contamination

- Contamination from chance superpositions, star-forming regions, disks with dust lanes, minor mergers
- Use flux ratio limits and detection thresholds to eliminate contamination

Contamination

- Contamination from chance superpositions, star-forming regions, disks with dust lanes, minor mergers
- Use flux ratio limits and detection thresholds to eliminate contamination
- Contamination $\sim 30 \%$ from non-mergers and minor mergers

Merger Rates from Late-Stage Mergers

- Sample restricted to $\log M_{*} / M_{\odot}>10.6$, mass complete
- The per galaxy merger rate

$$
\Re_{\text {merge }}=C_{\text {merge }} f_{\text {pair }}\left\langle\frac{1}{T_{\text {obs }}}\right\rangle
$$

Correction factor $C_{\text {merge }} \approx$
0.7 chance super-positions non-mergers

incompleteness

Merger Rates from Late-Stage Mergers

- Sample restricted to $\log M_{*} / M_{\odot}>10.6$, mass complete
- The per galaxy merger rate

$$
\Re_{\text {merge }}=C_{\text {merge }} f_{\text {pair }}\left\langle\frac{1}{T_{\text {obs }}}\right\rangle
$$

- Correction factor $C_{\text {merge }} \approx$ 0.7 chance super-positions \times 0.67 non-mergers \times
 $\sim 1-5$ incompleteness
- Timescale for observing merger $1 /\left\langle 1 / T_{\text {obs }}\right\rangle \approx 0.33 \mathrm{Gyr}$ (Lotz, 2011)

Merger Rates from Late-Stage Mergers

- Sample restricted to $\log M_{*} / M_{\odot}>10.6$, mass complete
- The per galaxy merger rate

$$
\Re_{\text {merge }}=C_{\text {merge }} f_{\text {pair }}\left\langle\frac{1}{T_{\text {obs }}}\right\rangle
$$

- Correction factor $C_{\text {merge }} \approx$ 0.7 chance super-positions \times 0.67 non-mergers \times
$\sim 1-5$ incompleteness

$\Re_{\text {merge }} \propto(1+z)^{3.8 \pm 0.9}$
- Timescale for observing merger $1 /\left\langle 1 / T_{\text {obs }}\right\rangle \approx 0.33 \mathrm{Gyr}$
(Lotz, 2011)

Merger Rate for Red and Blue Galaxies (I)

$\Re_{\text {merge }} \propto(1+z)^{4.5 \pm 1.3}$
Uses different corrections factors ($C_{\text {merge }}$) for red and blue galaxies.

Merger Rate for Red and Blue Galaxies (II)

- Growth in merger rate driven by SF galaxies
- Increase in fraction of SF mergers driven by increase in SF galaxy fraction
- Different samples/populations have different merging histories

Merger Rate for Red and Blue Galaxies (II)

 without redshift dependent completeness correction- Completeness correction mainly affects SF galaxies
- Redshift evolution largely from completeness correction
- $\Re_{\text {merge }} \propto(1+z)^{0.8 \pm 0.8}$

AGN Fraction Compared to Field Galaxies

Pair data from Silverman, 2011

- zCOSMOS + Chandra footprint
- 3481 galaxies with

$$
\begin{aligned}
& M_{*}>2 \times 10^{10} M_{\odot} \text { and } \\
& 0.25<z<1.05
\end{aligned}
$$

- 112 late stage mergers (6 x-ray sources)
- Upper limit on AGN enhancement is 3 (median, 1.7 ± 0.7)
- $20.0 \pm 0.8 \%$ of AGN activity due to mergers (incl. wide pairs)

Late-Stage Mergers with an AGN

09:59:19.3 +1:54:07.6

10:02:02.5 +2:01:45.1

10:01:34.9 +2:03:27.1

09:59:57.0 $+2: 35: 06.8$

Late-Stage Mergers with an AGN

09:59:19.3+1:54:07.6
10:02:02.5 +2:01:45.1

10:01:34.9 +2:03:27.1

09:59:57.0 $+2: 35: 06.8$

SFR in Late-Stage Mergers

late-stage mergers
$24 \mu \mathrm{~m}$ SFR

kinematic pairs
[O II] 13727 SFR

Kampczyk, 2013

- SFR enhanced by 2.1 ± 0.6 for late-stage mergers
- $18 \pm 5 \%$ of SF occurs in mergers; $8 \pm 5 \%$ due to mergers

Summary

- Median filtering effectively selects galaxy near coalescence
- automated method
- requires correction for incompleteness
- Evolution of the merger rate
- quiescent galaxies show no evolution in merger rate - mergers between star-forming dalaxies increase with z

To $z \sim 1$, mergers are not the dominant driver of AGN or SF

Summary

- Median filtering effectively selects galaxy near coalescence
- automated method
- requires correction for incompleteness
- Evolution of the merger rate
- $\Re_{\text {merge }} \propto(1+z)^{3.8 \pm 0.9}$
- quiescent galaxies show no evolution in merger rate
- mergers between star-forming galaxies increase with z

To $z \sim 1$, mergers are not the dominant driver of AGN or SF

Summary

- Median filtering effectively selects galaxy near coalescence
- automated method
- requires correction for incompleteness
- Evolution of the merger rate
- $\Re_{\text {merge }} \propto(1+z)^{3.8 \pm 0.9}$
- quiescent galaxies show no evolution in merger rate
- mergers between star-forming galaxies increase with z
- AGN fraction and star formation rates enhanced by $\sim 1-3 \times$.
- at most 20% of AGN are triggered by close interactions
- $\lesssim 10 \%$ of SF triggered by merging

To $z \sim 1$, mergers are not the dominant driver of AGN or SF

Solutions to Contaminants

Can remove most contaminants by checking detected multiple peaks:

- Peaks must be within 2.2-8 kpc ($\sim 1^{\prime \prime}$) Eliminates resolved pairs of sources
$\Delta m a g<1.9$ for peaks in same source
Corresponds to \sim 1:3 merger ratio
Eliminates small star-forming regions
Peaks contain more than $\sim 2 \%$ of total galaxy flux
Eliminates small star-forming regions

Solutions to Contaminants

Can remove most contaminants by checking detected multiple peaks:

- Peaks must be within 2.2-8 kpc ($\sim 1^{\prime \prime}$) Eliminates resolved pairs of sources
- $\Delta \mathrm{mag}<1.9$ for peaks in same source Corresponds to ~1:3 merger ratio Eliminates small star-forming regions

Peaks contain more than $\sim 2 \%$ of total galaxy flux

Solutions to Contaminants

Can remove most contaminants by checking detected multiple peaks:

- Peaks must be within 2.2-8 kpc ($\sim 1^{\prime \prime}$) Eliminates resolved pairs of sources
- $\Delta \mathrm{mag}<1.9$ for peaks in same source Corresponds to $\sim 1: 3$ merger ratio Eliminates small star-forming regions
- Peaks contain more than $\sim 2 \%$ of total galaxy flux Eliminates small star-forming regions

Solutions to Contaminants

Can remove most contaminants by checking detected multiple peaks:

- Peaks must be within 2.2-8 kpc ($\sim 1^{\prime \prime}$) Eliminates resolved pairs of sources
- $\Delta \mathrm{mag}<1.9$ for peaks in same source Corresponds to $\sim 1: 3$ merger ratio Eliminates small star-forming regions
- Peaks contain more than $\sim 2 \%$ of total galaxy flux Eliminates small star-forming regions
- Three or more peaks cannot form a line ($\rho_{\text {pearson }}<0.5$) Eliminates edge-on disks

Solutions to Contaminants

Can remove most contaminants by checking detected multiple peaks:

- Peaks must be within 2.2-8 kpc ($\sim 1^{\prime \prime}$) Eliminates resolved pairs of sources
- $\Delta \mathrm{mag}<1.9$ for peaks in same source Corresponds to $\sim 1: 3$ merger ratio Eliminates small star-forming regions
- Peaks contain more than $\sim 2 \%$ of total galaxy flux Eliminates small star-forming regions
- Three or more peaks cannot form a line ($\rho_{\text {pearson }}<0.5$) Eliminates edge-on disks
- Thresholds and ring size can be adjusted for different data

G-M M_{20} and Asymmetry Selections

Pairs have slightly higher Gini coefficient, but majority are below merger criterion (Lotz, 2008).

Pairs have lower concentration values, but not very high asymmetry.

$70 \mu \mathrm{~m}$ Galaxies

- $70 \mu \mathrm{~m}$-selected galaxies from Kartaltepe, 2009
- Extremely close pairs are 5\% of $70 \mu \mathrm{~m}$-selected galaxies
- <2\% of full sample
- Agrees with SFR enhancement of ~ 2 - 3

