Double yolk galaxies: late-stage galaxy mergers in COSMOS

Claire Lackner

Kavli IPMU (WPI) University of Tokyo

July 2014

arXiv 1406.2327

Introduction

1. Finding late-stage mergers Median filtering Sample from COSMOS

 Properties of late-stage mergers Merger rates AGN fraction Star formation rates

Introduction

 Finding late-stage mergers Median filtering Sample from COSMOS
 Properties of late-stage mergers Merger rates AGN fraction Star formation rates

Sample from COSMOS

- Parent sample: 44,000 galaxies
- Redshift range: 0.2 < z < 1.0 (photo-z from llbert, 2013)
- Magnitude limit: *m*_{FW814} < 23
- Method applied to HST/ACS images (0.03"/pixel)
- Physical separation limited between 2.2 and 8 kpc
- 1547 late-stage merger candidates
- $\sim 5\%$ of massive galaxies (log $\textit{M}_{*}/\textit{M}_{\odot} >$ 10.6) are late-stage mergers

Late-Stage Mergers from COSMOS

Testing with Mock Merger Images

- Postage stamps for two galaxies co-added to make mock merger images
- Pair members have similar photo-zs
- Co-added at fixed separations
- Cannot account for structure changes due to merger

Testing with Mock Merger Images

- Postage stamps for two galaxies co-added to make mock merger images
- Pair members have similar photo-zs
- Co-added at fixed separations
- Cannot account for structure changes due to merger

Completeness

as a function of redshift

as a function of separation

Finding a merger depends strongly on the morphology of the constituent galaxies.

Contamination

- Contamination from chance superpositions, star-forming regions, disks with dust lanes, minor mergers
- Use flux ratio limits and detection thresholds to eliminate contamination
 - Contamination ~ 30% from non-mergers and minor mergers

Contamination

- Contamination from chance superpositions, star-forming regions, disks with dust lanes, minor mergers
- Use flux ratio limits and detection thresholds to eliminate contamination
 - Contamination ~ 30% from non-mergers and minor mergers

Contamination

- Contamination from chance superpositions, star-forming regions, disks with dust lanes, minor mergers
- Use flux ratio limits and detection thresholds to eliminate contamination
- Contamination ~ 30% from non-mergers and minor mergers

Merger Rates from Late-Stage Mergers

- Sample restricted to $\log M_*/M_\odot > 10.6$, mass complete
- The per galaxy merger rate

$$\Re_{\rm merge} = C_{\rm merge} f_{\rm pair} \langle \frac{1}{T_{\rm obs}} \rangle$$

- Correction factor $C_{\rm merge} \approx$ 0.7 chance super-positions > 0.67 non-mergers × ~ 1 - 5 incompleteness
- Himescale for observing marge $1/\langle 1/T_{\rm obs}
 angle \approx 0.33$ Gyr (Lotz, 2011)

Merger Rates from Late-Stage Mergers

- Sample restricted to $\log M_*/M_\odot > 10.6$, mass complete
- The per galaxy merger rate

$$\Re_{\rm merge} = C_{\rm merge} f_{\rm pair} \langle \frac{1}{T_{\rm obs}} \rangle$$

- Correction factor C_{merge} ≈
 0.7 chance super-positions ×
 0.67 non-mergers ×
 ~ 1 − 5 incompleteness
- Timescale for observing merger $1/\langle 1/T_{obs} \rangle \approx 0.33$ Gyr (Lotz, 2011)

Merger Rates from Late-Stage Mergers

- Sample restricted to $\log M_*/M_\odot > 10.6$, mass complete
- The per galaxy merger rate

$$\Re_{\rm merge} = C_{\rm merge} f_{\rm pair} \langle \frac{1}{T_{\rm obs}} \rangle$$

- Correction factor C_{merge} ≈ 0.7 chance super-positions × 0.67 non-mergers × ~ 1 − 5 incompleteness
- Timescale for observing merger $1/\langle 1/T_{obs}\rangle\approx 0.33$ Gyr (Lotz, 2011)

Merger Rate for Red and Blue Galaxies (I)

Uses different corrections factors (C_{merge}) for red and blue galaxies.

Merger Rate for Red and Blue Galaxies (II)

- Growth in merger rate driven by SF galaxies
- Increase in fraction of SF mergers driven by increase in SF galaxy fraction
- Different samples/populations have different merging histories

Merger Rate for Red and Blue Galaxies (II)

without redshift dependent completeness correction

- Completeness correction mainly affects SF galaxies
- Redshift evolution largely from completeness correction
- $\Re_{
 m merge} \propto (1+z)^{0.8\pm0.8}$

AGN Fraction Compared to Field Galaxies

Pair data from Silverman, 2011

- zCOSMOS + Chandra footprint
- 3481 galaxies with $M_* > 2 \times 10^{10} M_{\odot}$ and 0.25 < z < 1.05
- 112 late stage mergers (6 x-ray sources)
- Upper limit on AGN enhancement is 3 (median, 1.7 ± 0.7)
- 20.0 \pm 0.8% of AGN activity due to mergers (incl. wide pairs)

Late-Stage Mergers with an AGN

Late-Stage Mergers with an AGN

SFR in Late-Stage Mergers

late-stage mergers 24 μm SFR

kinematic pairs [O II] λ 3727 SFR

- SFR enhanced by 2.1 \pm 0.6 for late-stage mergers
- 18 \pm 5% of SF occurs in mergers; 8 \pm 5% due to mergers

Summary

- Median filtering effectively selects galaxy near coalescence
 - · automated method
 - requires correction for incompleteness
- Evolution of the merger rate
 - $\Re_{\text{merge}} \propto (1+z)^{3.8\pm0.9}$
 - quiescent galaxies show no evolution in merger rate
 - mergers between star-forming galaxies increase with z
- $\,\circ\,$ AGN fraction and star formation rates enhanced by $\sim 1-3 \times .$
 - at most 20% of AGN are triggered by close interactions $\lesssim 10\%$ of SF triggered by merging

To $z \sim$ 1, mergers are not the dominant driver of AGN or SF

Summary

- Median filtering effectively selects galaxy near coalescence
 - automated method
 - requires correction for incompleteness
- Evolution of the merger rate
 - $\Re_{\mathrm{merge}} \propto (1+z)^{3.8\pm0.9}$
 - quiescent galaxies show no evolution in merger rate
 - mergers between star-forming galaxies increase with z
- AGN fraction and star formation rates enhanced by $\sim 1 3 \times$. at most 20% of AGN are **triggered** by close interactions $\lesssim 10\%$ of SF **triggered** by merging

To $z \sim$ 1, mergers are not the dominant driver of AGN or SF

Summary

- Median filtering effectively selects galaxy near coalescence
 - automated method
 - requires correction for incompleteness
- Evolution of the merger rate
 - $\Re_{\text{merge}} \propto (1+z)^{3.8\pm0.9}$
 - quiescent galaxies show no evolution in merger rate
 - mergers between star-forming galaxies increase with z
- AGN fraction and star formation rates enhanced by $\sim 1-3\times.$
 - at most 20% of AGN are triggered by close interactions
 - \lesssim 10% of SF triggered by merging

To $z \sim$ 1, mergers are not the dominant driver of AGN or SF

Can remove most contaminants by checking detected multiple peaks:

- Peaks must be within 2.2-8 kpc (~ 1") Eliminates resolved pairs of sources
- Δmag< 1.9 for peaks in same source Corresponds to ~ 1:3 merger ratio Eliminates small star-forming regions
- Peaks contain more than \sim 2% of total galaxy flux Eliminates small star-forming regions
- Three or more peaks cannot form a line ($\rho_{\rm pearson} < 0.5$) Eliminates edge-on disks

Thresholds and ring size can be adjusted for different data

return

Can remove most contaminants by checking detected multiple peaks:

- Peaks must be within 2.2-8 kpc (~ 1") Eliminates resolved pairs of sources
- ∆mag< 1.9 for peaks in same source Corresponds to ~ 1:3 merger ratio Eliminates small star-forming regions
- Peaks contain more than \sim 2% of total galaxy flux Eliminates small star-forming regions
- Three or more peaks cannot form a line ($\rho_{\rm pearson} < 0.5$) Eliminates edge-on disks
- Thresholds and ring size can be adjusted for different data

return

Can remove most contaminants by checking detected multiple peaks:

- Peaks must be within 2.2-8 kpc (~ 1") Eliminates resolved pairs of sources
- Δmag< 1.9 for peaks in same source Corresponds to ~ 1:3 merger ratio Eliminates small star-forming regions
- Peaks contain more than \sim 2% of total galaxy flux Eliminates small star-forming regions
- Three or more peaks cannot form a line ($\rho_{\rm pearson} < 0.5$) Eliminates edge-on disks

Thresholds and ring size can be adjusted for different data

◄ return

Can remove most contaminants by checking detected multiple peaks:

- Peaks must be within 2.2-8 kpc (~ 1") Eliminates resolved pairs of sources
- Δmag< 1.9 for peaks in same source Corresponds to ~ 1:3 merger ratio Eliminates small star-forming regions
- Peaks contain more than \sim 2% of total galaxy flux Eliminates small star-forming regions
- Three or more peaks cannot form a line ($\rho_{pearson} < 0.5$) Eliminates edge-on disks

Can remove most contaminants by checking detected multiple peaks:

- Peaks must be within 2.2-8 kpc (~ 1") Eliminates resolved pairs of sources
- Δmag< 1.9 for peaks in same source Corresponds to ~ 1:3 merger ratio Eliminates small star-forming regions
- Peaks contain more than \sim 2% of total galaxy flux Eliminates small star-forming regions
- Three or more peaks cannot form a line ($\rho_{pearson} < 0.5$) Eliminates edge-on disks
- Thresholds and ring size can be adjusted for different data

return

G-M₂₀ and Asymmetry Selections

0.00 0.05 0.10 0.15 Asymmetry 0.20 0.25 0.30 0.35 0.40 0.20 raction 0.15 0.10 0.05 0.00 45 3.0 2.5 2.0 15 З 5 Concentration

Pairs have *slightly* higher Gini coefficient, but majority are below merger criterion (Lotz, 2008). Pairs have lower concentration values, but not very high asymmetry.

$70\mu m$ Galaxies

- 70µm-selected galaxies from Kartaltepe, 2009
- Extremely close pairs are 5% of 70µm-selected galaxies
- < 2% of full sample
- Agrees with SFR enhancement of $\sim 2-3$

