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Median Ring Filtering Detection Algorithm

Median ring filter smooths on scales < 1.3× PSF FWHM.
Peaks are distinguishable in difference image.
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Sample from COSMOS

• Parent sample: 44,000 galaxies
• Redshift range: 0.2 < z < 1.0 (photo-z from Ilbert, 2013)
• Magnitude limit: mFW814 < 23
• Method applied to HST/ACS images (0.03′′/pixel)
• Physical separation limited between 2.2 and 8 kpc
• 1547 late-stage merger candidates
• ∼ 5% of massive galaxies (log M∗/M� > 10.6) are late-stage

mergers
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Late-Stage Mergers from COSMOS
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Testing with Mock Merger Images

• Postage stamps for two galaxies
co-added to make mock merger
images

• Pair members have similar
photo-zs

• Co-added at fixed separations
• Cannot account for structure

changes due to merger

late-late merger
z=0.69

8 kpc

late-late merger
z=0.85

8 kpc

early-late merger
z=0.34

8 kpc

early-early merger
z=1.04

8 kpc

C. Lackner July, 2014 6 / 17



Testing with Mock Merger Images

• Postage stamps for two galaxies
co-added to make mock merger
images

• Pair members have similar
photo-zs

• Co-added at fixed separations
• Cannot account for structure

changes due to merger

late-late merger
z=0.69

8 kpc

late-late merger
z=0.85

8 kpc

early-late merger
z=0.34

8 kpc

early-early merger
z=1.04

8 kpc

C. Lackner July, 2014 6 / 17



Completeness
as a function of redshift
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Finding a merger depends strongly on the
morphology of the constituent galaxies.
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Contamination

• Contamination from chance
superpositions, star-forming
regions, disks with dust lanes,
minor mergers

• Use flux ratio limits and detection
thresholds to eliminate
contamination

• Contamination ∼ 30% from
non-mergers and minor mergers
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Contamination
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Merger Rates from Late-Stage Mergers
• Sample restricted to

log M∗/M� > 10.6, mass
complete

• The per galaxy merger rate

<merge = Cmergefpair〈
1

Tobs
〉

• Correction factor Cmerge ≈
0.7 chance super-positions ×
0.67 non-mergers ×
∼ 1− 5 incompleteness

• Timescale for observing merger
1/〈1/Tobs〉 ≈ 0.33 Gyr
(Lotz, 2011)
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Merger Rate for Red and Blue Galaxies (I)
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<merge ∝ (1 + z)4.5±1.3 <merge ∝ (1 + z)1.1±1.2

Uses different corrections factors (Cmerge) for red and blue galaxies.
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Merger Rate for Red and Blue Galaxies (II)

• Growth in merger rate driven
by SF galaxies

• Increase in fraction of SF
mergers driven by increase in
SF galaxy fraction

• Different samples/populations
have different merging
histories
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Merger Rate for Red and Blue Galaxies (II)

without redshift dependent completeness correction

• Completeness correction
mainly affects SF galaxies

• Redshift evolution largely from
completeness correction

• <merge ∝ (1 + z)0.8±0.8
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AGN Fraction Compared to Field Galaxies

Pair data from Silverman, 2011

• zCOSMOS + Chandra footprint
• 3481 galaxies with

M∗ > 2× 1010M� and
0.25 < z < 1.05

• 112 late stage mergers (6 x-ray
sources)

• Upper limit on AGN enhancement
is 3 (median, 1.7± 0.7)

• 20.0± 0.8% of AGN activity due to
mergers (incl. wide pairs)
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Late-Stage Mergers with an AGN
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Late-Stage Mergers with an AGN
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SFR in Late-Stage Mergers

late-stage mergers
24 µm SFR
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Kampczyk, 2013

• SFR enhanced by 2.1± 0.6 for late-stage mergers
• 18± 5% of SF occurs in mergers; 8± 5% due to mergers
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Summary

• Median filtering effectively selects galaxy near coalescence
• automated method
• requires correction for incompleteness

• Evolution of the merger rate
• <merge ∝ (1 + z)3.8±0.9

• quiescent galaxies show no evolution in merger rate
• mergers between star-forming galaxies increase with z

• AGN fraction and star formation rates enhanced by ∼ 1− 3×.
• at most 20% of AGN are triggered by close interactions
• . 10% of SF triggered by merging

To z ∼ 1, mergers are not the dominant driver of AGN or SF
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Solutions to Contaminants

Can remove most contaminants by checking detected multiple peaks:
• Peaks must be within 2.2-8 kpc (∼ 1′′)

Eliminates resolved pairs of sources
• ∆mag< 1.9 for peaks in same source

Corresponds to ∼ 1:3 merger ratio
Eliminates small star-forming regions

• Peaks contain more than ∼ 2% of total galaxy flux
Eliminates small star-forming regions

• Three or more peaks cannot form a line (ρpearson < 0.5)
Eliminates edge-on disks

• Thresholds and ring size can be adjusted for different data
return

C. Lackner July, 2014 16 / 17



Solutions to Contaminants

Can remove most contaminants by checking detected multiple peaks:
• Peaks must be within 2.2-8 kpc (∼ 1′′)

Eliminates resolved pairs of sources
• ∆mag< 1.9 for peaks in same source

Corresponds to ∼ 1:3 merger ratio
Eliminates small star-forming regions

• Peaks contain more than ∼ 2% of total galaxy flux
Eliminates small star-forming regions

• Three or more peaks cannot form a line (ρpearson < 0.5)
Eliminates edge-on disks

• Thresholds and ring size can be adjusted for different data
return

C. Lackner July, 2014 16 / 17



Solutions to Contaminants

Can remove most contaminants by checking detected multiple peaks:
• Peaks must be within 2.2-8 kpc (∼ 1′′)

Eliminates resolved pairs of sources
• ∆mag< 1.9 for peaks in same source

Corresponds to ∼ 1:3 merger ratio
Eliminates small star-forming regions

• Peaks contain more than ∼ 2% of total galaxy flux
Eliminates small star-forming regions

• Three or more peaks cannot form a line (ρpearson < 0.5)
Eliminates edge-on disks

• Thresholds and ring size can be adjusted for different data
return

C. Lackner July, 2014 16 / 17



Solutions to Contaminants

Can remove most contaminants by checking detected multiple peaks:
• Peaks must be within 2.2-8 kpc (∼ 1′′)

Eliminates resolved pairs of sources
• ∆mag< 1.9 for peaks in same source

Corresponds to ∼ 1:3 merger ratio
Eliminates small star-forming regions

• Peaks contain more than ∼ 2% of total galaxy flux
Eliminates small star-forming regions

• Three or more peaks cannot form a line (ρpearson < 0.5)
Eliminates edge-on disks

• Thresholds and ring size can be adjusted for different data
return

C. Lackner July, 2014 16 / 17



Solutions to Contaminants

Can remove most contaminants by checking detected multiple peaks:
• Peaks must be within 2.2-8 kpc (∼ 1′′)

Eliminates resolved pairs of sources
• ∆mag< 1.9 for peaks in same source

Corresponds to ∼ 1:3 merger ratio
Eliminates small star-forming regions

• Peaks contain more than ∼ 2% of total galaxy flux
Eliminates small star-forming regions

• Three or more peaks cannot form a line (ρpearson < 0.5)
Eliminates edge-on disks

• Thresholds and ring size can be adjusted for different data
return

C. Lackner July, 2014 16 / 17



G-M20 and Asymmetry Selections
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Pairs have slightly higher Gini
coefficient, but majority are below
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70µm Galaxies

• 70µm-selected galaxies from
Kartaltepe, 2009

• Extremely close pairs are 5%
of 70µm-selected galaxies

• < 2% of full sample
• Agrees with SFR

enhancement of ∼ 2− 3
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