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Cosmological Perspective

Since the late 1960s, we have made substantial progress in physics.
We now have:

A standard model for particle physics

A standard model for cosmology with tightly constrained parameters

A solid frame work for understanding the growth of structure —
ACDM

We are here to understand the non-linear growth of
structure and how the baryons follow this growth.



Why iIs this perspective relevant?

This non-linear growth 1s simply driven by gravity

Further growth can be understood as other processes trying to regulate the
collapse of structures through gravity:

*cold accretion/cooling of halo gas (instabilities important)
*disk 1nstabilities and clumps

*star formation

*oeneration of radiative and mechanical energy from AGN ....

Via the virial theorem, about half of this gravitational energy 1s feeding a
turbulent cascade ...



My Summary of Galaxy evolution (ala Hopkins)

AGN + SF + accretion:

P l(k): 1 p.(k) Turbulent pressure,
fina l cosmic ray pressure, B-field
— pressure, radiation pressure,
Pﬁnal(k> ZPz(k> PP : g
ionization, shocks, gravitational
o instabilities ....
Central limit theorem log-normal
Like what one sees in Eddington
ratios in Kaufmann & Heckman?
wings
IUI' T T T RN DAL T T M HLLALLL B L LALY B
T I-E%{‘_ < :
-3 i ] |]_|]|: g -
- z=1.0 EI i
= z=2.0 = L
E z=3.0 E 0.001F z=3.0 B E
7 z=40 z=4.0 \L ]
=510 | z=510 i
=60 E =60 -
=70 ] z=7.0 .
ST RN B .......|K=.t%'{.}.....| . il o Ll .x..=..t?.'|{} Covnd il |
0™ 10" 10" 10" 10" 10" e 10" 10" 10" 10" 10"
M, [M,] M, [M_]

Galaxy formation is inefficient ...

most baryons not in galaxy proper ...

Behroozi et al. (2012)



Need for (Self-)regulation
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Nonetheless, need some self-regulation of BHs for exponential cut-off
Benson et al. (2003)



What drives the time evolution of the
mass growth?
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Weinmann et al. (2011)
Why doesn't the specific growth rate follow the specific accretion rate of
the gas? Too simple as growth rates are mass dependent.
Outflows and feedback?

Angular momentum?
Accretion rate over-estimated (over-cooling)?

Weinmann et al. (2011)



My talk title is:

“What is the impact of AGN on star
formation?”

This 1s a fool errand ... we don't understand how
stars form!

So we are stuck with: “positive”, “negative”, or none and have to
compare active, not active, and impact on “star formation laws™.



Star formation: some “laws”

Provide insights into how AGN might influence star formation ...

General law:
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Influence of AGN
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Underlying Mechanisms for AGN Feedback

Disk Winds

Radiatively driven

Hydromagnetic
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Ideas for limiting star formation

Prevention: Prevent gas from cooling or accreting onto the galaxy proper ... no
gas, no star formation

Problems: Mass return alone is significant and in disk galaxies and
lenticulars, the velocity dispersions are low ... short cooling
time, << tHo

Removal: Outflows appear ubiquitous.

Problems: Do they remove all the gas? What is their long term
evolution? Coordination problem? Turn on when needed and
shut down quickly?

Inhibition: Radiative and pressure effects (UV, cosmic rays, magnetic fields),
generate and maintain strong turbulence, prevent the transition from WNM to
CMM.

Problems: Little evidence! Also, complicated and difficult to pin down.



Ideas for enhancing star formation

Compression: Compress critically stable clouds

Enhancements: Shorten the formation of molecular gas through increased

turbulence or pressure

lonization: Deeply penetrating cosmic rays or X-rays/UV may increase the
ionization state and allow for the formation of H_likely important for low metallicity
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Mass dependent

We have discussed the efficiency of outflows, but the need for a
catastrophic phase of outflow or inhibition depends of mass.

dM./dt /M, (Gyr-?)
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ETGs

Slow rotators fast rotators
Weakly triaxial disks

No disk axisymmetric
Elliptical 1sophotes disk E to SO to
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Does the IMF really vary systematically in ETGs?
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The ISM they are living in

In mergers, the star formation is coordinated, the
ISM has been shaped by the merger and is critically
unstable.

Ages from broadband fit
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AGN evolve globally in a “frozen ISM” ... tdyn~108 vs.t  ~107 yrs,

AGN

this depends on scale, circumnuclear scales important for impact.
Mengel et al. (2005)



Physics of Winds

Outflows driven by the collective thermalization of stellar winds and
supernova

Thermalization of SNe:
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Pwind/ (Lgor/c)

Momentum flux

Momentum flux depends on the terminal velocities of the most mass
components and the AGN is like a “disk wind”/radio jet.
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An intralude

Starburst driven winds tell us that the distribution of the phases is
the only way of determining the heating, cooling, and dissipation ...

In analogy with stellar systems, heat capacity of gas can be
positive or negative ... fate of energy depends on the
ISM/ICM/IGM in which it flows...

Intense star formation is self regulating ...

What we think may drive the turbulence, bulk motions, and phase
distribution of ISM depends on the dissipation timescales in the
various phases ...

Outflows are unlikely to be as efficient as we need to remove the
gas or suppress star formation completely ... and there is always
mass return ...



How might the "quenching” work or not?

Some illustrations



Quenching at high redshift

Powerful radio galaxies at high-z are driving incredible outflows ...
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Jet Simulations

Outflows are only one part of the equation for maintenance ...
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Positive feedback

Radio jets associated with young stars ... other evidence
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How might the “maintenance mode” work"?

Given the differences in RG and QSO populations,
jets perhaps play a key role for ETGs

A sketch of a naive cycle



Large Scale Feedback Cycle

The game is to find out were the energy goes ... dissipation vs advection

Ejected from halo

Cools and rains back down

Bulk flow of hot and warm ionized gas,
warm neutral gas, and warm molecular gas

P.u« multiphase outflow

il

III Hot Cocoon [: Clouds l[: Warm Gas
thermal power kinetic energy thermal energy

Long dissipation time-settles
down and fuels BH

. accelerales heais
injects
mechanical
power o w D'
L, cooling radiation L., &L,
thermal Bremsstrahlung &  Dissipation of mechanical Cools through optical-IR atomic
line cooling and thermal energy as recombination and molecular lines

turbulent cascade down
to small scales and dense material




Large scale molecular gas

mm and strong optical line emission ...

MH2~2-5 x 10" M,

Nice correlation
between line
emission and
molecular mass.
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Relative R.A. (arcsec)

E
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Perseus core; Salomé et al. (2006)

Energy injection can lead to the formation of cold gas ...



Mechanical heating/star-formation

H, S(0)—-S(3)/PAH(7.7um)

H2 Luminous Galaxies

H_luminous galaxies show the importance of global shock heating ...
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H2 Luminous Galaxies

Despite being rich in cold molecular gas ... little star-formation ...

These radio galaxies can

PDR Models (G, =10-10" ) have Iarge H2 masses as
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The case of 3C326 N
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3C326N

However, observations of the [CII] line suggest a more subtle picture ...
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Luminous [CII] emission suggest disk is forming WMM very rapidly (ala

Wolfire et al. and its large width suggests the gas is extremely turbulent
with some bulk motions ... combined with its mass surface density and

that of the ETG, the disk is not self-gravitating on any scale (key point)

. is this why feedback is positive and negative .... Guillard et al. (2014)



3C326N

The backflow of the radio jet is likely ...

*Transfering energy into the disk through its ram pressure;
*Helping to shape and actually confine the disk;

*Speculative: the moderate pressures are responsible for creating the molecular
disk in the first place ... positive feedback and negative feedback

Gaibler et al. (2010)



A Case Study: 3C326 a local radio galaxy
Distribution of energy ... tracking down the cycle ... ~2x10’ M_ warm cold H)

Poax multiphase outflow
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Energy injection rate
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Energy important for maintaining disk ... SFR low ... gas-rich but lies off of the S-K relation



Terr (Mo yr! kpe?)

MW as a distant galaxy
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Some final thoughts

The questions we are asking are often not well formulated. What is it exactly what we
want AGN to do?

Outflows are only one part of the equation ... important yes, but cannot be the whole
story ... feedback is a cycle ... what does feedback regulate?

Angular momentum of the gas is likely to be very important ... much of the stellar
mass is in rotating disks/pseudo-bulges ... secular effects important too. Self-gravity
is important in the relation between SF and AGN implying stellar mass surface
density is important ...

To test the impact, global relations are not enough, need to find the mechanisms ... if
any ... say, efficiency of molecular gas formation/efficiency of star formation ...

The environment in which the AGN evolve is strongly redshift dependent ... the
effects may be the same, but phenomenology will be different ... disks are thick at
highz ...

Outflows are a mass and energy flow ... mass and energy moves between and
changes phases ...
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