AGN and Star Formation in Dwarf Galaxies

Amy Reines

Einstein Fellow at NRAO \rightarrow Hubble Fellow at Univ. of Michigan (starting Friday)

Supermassive black holes and galaxy evolution

- SMBHs are fundamental components of today's massive galaxies
- SMBHs power AGN, which are a source of feedback in galaxies
- SMBHs are thought to play an important role in the evolution of galaxies

... usually thought about in the context of massive galaxies with bulges

Dwarf galaxies can also host massive black holes! (and a large fraction of dwarfs are forming stars)

>100 SDSS dwarfs (Reines, Greene & Geha 2013)

17 12 J081145.29+232825.6 J090222.76+141049.4 J090613.75+561015.5 J100935.66+265648.8 J114302.41+260818.9 28 35 119 23 48 J140510.4+114617 J130457.86+362622.2 J154059.61+315507.3 J085125.81+393541.6 J152637.36+065941.6

NGC 404

(Seth et al. 2010)

Dwarf galaxies can also host massive black holes! (and a large fraction of dwarfs are forming stars)

★ Evidence for BH accretion in dwarf galaxies★ Constraints on the origin of SMBH seeds

The origin of supermassive black holes

Directly observing the first BH seeds is currently not feasible

• High-z galaxies from the sample of Bouwens et al. NOT detected in 4 Ms *Chandra* Deep Field South (individully or stacked) (Willott 2011; Cowie et al. 2012; Treister 2013)

• star-forming, blue, compact galaxies 600-800 Myr after the Big Bang (Bouwens et al. 2010)

- intrinsic sizes < 1 kpc (Oesch et al. 2010)
- masses ~ 10^9 - 10^{10} M_{sun} (Labbe et al. 2010)

Present-day dwarf galaxies offer another avenue to observationally constrain the origin of supermassive BH seeds

(e.g., masses, host galaxies, and in principle, even the formation mechanism)

The origin of supermassive black holes

Observations of high-redshift quasars:

• M_{BH} > 10⁹ M_{sun} less than a Gyr after the Big Bang (e.g. Fan et al. 2001; Mortlock et al. 2011)

Seeds almost certainly started out with masses considerably in excess of normal stellar-mass BHs

The origin of supermassive black holes Possible seed formation mechanisms remnants from Pop III stars

Gas cools very slowly forming a stable disc

direct collapse

collisions in dense star clusters

Dark matte

Gas

Globally unstable gas infalls rapidly toward the galaxy center and a supermassive star forms

The stellar core collapses into a small black hole, embedded in what is left of the star

First stars:

maybe one

galaxy, up

to several

larger than

the sun

hundred times

star per

If the star is more massive than ~300 solar masses, it collapses into a black hole, ~200 times the mass of Sun

The black hole swallows the envelope growing up to ~one million solar masses

Stars merge into a very massive star that collapses into a black hole ~1000 times more massive than the Sun

Locally unstable gas flows toward the galaxy center

Gas fragments into stars, and a dense star cluster forms

Volonteri 2012, Science

The origin of supermassive black holes Models of black hole growth in a cosmological context

Greene 2012, Nature Communications; also see review in Volonteri 2010

and now some recent evidence for dwarf galaxies hosting massive BHs...

Largest sample of dwarfs hosting massive BHs to date

(with BH mass estimates)

Largest sample of dwarfs hosting massive BHs to date

Examples of host galaxies

4 J081145.29+232825.6	8 J090222.76+141049.4	9 J090613.75+561015.5	12 J100935.66+265648.8	17 J114302.41+260818.9
		•		
23 J130457.86+362622.2	28 J140510.4+114617	35 J154059.61+315507.3	48 J085125.81+393541.6	119 J152637.36+065941.6

Smallest and least-massive galaxies known to host masssive BHs

~0.5% of dwarfs have <u>optical signatures</u> of accreting massive BHs

... but only sensitive to the most actively accreting BHs in galaxies with low SF

Need other diagnostics!

High-resolution X-ray and radio observations

- More sensitive to weakly accreting BHs
- Can pick out AGN in galaxies with lots of star formation (common in dwarfs)

A massive BH in the dwarf starburst galaxy Henize 2-10

Reines et al. 2011, Nature

First example of a dwarf starburst galaxy with a massive BH (~10⁶ M_{sun})

A massive BH in the dwarf starburst galaxy Henize 2-10

VLBI follow-up with the Long Baseline Array (LBA)

Reines & Deller 2012

HST imaging of central ~ 250 pc

A massive BH in the dwarf starburst galaxy Henize 2-10

Motivation to look for additional examples of massive BHs in star-forming dwarf galaxies with Chandra and the VLA

metallicity ~ 10% solar (Masegosa et al. 1994) active star formation

Reines et al. 2014

Chandra ~ 21 ks

VLA, A-configuration, C-band ~ I hr on-source

SDSS z-band image of Mrk 709 S with position of hard X-ray source and radio contours

Reines et al. 2014

Chandra hard (2-7 keV) X-ray image

 $L_{(2-10 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1}$

(90% confidence interval)

Expected contribution from X-ray binaries within 3" spectroscopic fiber:

$$L_{\rm HX}^{\rm gal} = \alpha M_{\star} + \beta {\rm SFR}$$

Lehmer et al. (2010)

 $L_{(2-10 \text{ keV})} \sim 9 \times 10^{39} \text{ erg s}^{-1}$ (3 sigma upper limit)

Measured value (within ~1" Chandra PSF) is a factor of ~ 5x higher, suggesting the presence of an AGN

Chandra hard (2-7 keV) X-ray image

Minimum Black Hole Mass:

 $M_{\rm BH}/M_{\odot} \ge (\kappa L_{2-10 \rm keV})/(1.3 \times 10^{38} \rm \, erg \, s^{-1})$

Assuming BH radiating at Eddington limit and X-ray bolometric correction = 1,

 $M_{BH} > 385 M_{sun}$

(or >160 M_{sun} at 95% confidence)

 $L_{(2-10 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1}$

(90% confidence interval)

Chandra hard (2-7 keV) X-ray image

Minimum Black Hole Mass: $M_{\rm BH}/M_{\odot} \ge (\kappa L_{2-10 \rm keV})/(1.3 \times 10^{38} \rm \, erg \, s^{-1})$ Assuming BH radiating at Eddington limit and X-ray bolometric correction = I, $M_{\rm BH} > 385 \, M_{\rm sun}$ (or >160 M_{sun} at 95% confidence)

BH mass may be orders of magnitde larger

 $L_{(2-10 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1}$

(90% confidence interval)

SDSS z-band image of Mrk 709 S with position of hard X-ray source and radio contours

Central radio source (#2)

S_{7.4GHz} ~ 40 +/- 10 uJy S_{5.0GHz} ~ 60 +/- 20 uJy

 $L_{\rm radio} = (1.6 + 0.6) \times 10^{37} \, {\rm erg \ s^{-1}}$

Merloni et al. 2003

"fundamental plane of black hole activity" $\log L_R = 0.60 \log L_X + 0.78 \log M + 7.33$

order-of-magnitde estimate of BH mass: $M_{BH} \sim 6 \times 10^6 M_{sun}$

X-ray luminosity alone suggests a massive BH or super-Eddington accretion onto a stellar-mass BH

If the radio point source emission is also from the accreting BH, a stellar-mass BH is firmly ruled out

Reines et al. 2014

• X-ray + radio observations suggest the presence of a massive BH at the center of Mrk 709 S that is hidden at optical wavelengths

• Among the most metal-poor galaxies with evidence for an AGN, and the only known BH-hosting dwarf in an interacting pair

• Systems like this may have been more common at higher redshifts

Reines et al. 2014

Summary

• Found largest sample of massive BHs in dwarf galaxies to date using optical diagnostics (Reines, Greene & Geha 2013)

• Also using X-ray + radio diagnostics to search for BHs in dwarf galaxies: Henize 2-10 (Reines et al. 2011, Reines & Deller 2012), Mrk 709 (Reines et al. 2014)

• Host galaxies have stellar masses comparable to the Magellanic Clouds, a mass regime where very few massive BHs have previously been found

• New searches are underway and following-up on existing samples

• Implications for galaxy formation models and the connection between AGN activity and star formation at low masses, as well as the origin of supermassive black hole seeds