Luminous radio-loud AGN: triggering and (positive?) feedback

ASA, ESA, NRAO

Clive Tadhunter University of Sheffield

Collaborators: C. Ramos Almeida, D. Dicken, R. Morganti,T. Oosterloo, R. Oonk, M. Rose, P. Bessiere

Deep Gemini, Spitzer & Herschel observations of the 2Jy sample

- Complete sample of 46 southern 2Jy radio sources with intermediate redshifts 0.05 < z < 0.7 and steep radio spectra ($\alpha > 0.5$); $10^{25} < P_{1.4GHz} < 3 \times 10^{27} W Hz^{-1}$
- Best observed of all radio galaxy samples: deep X-ray (Chandra, XMM), optical (ESO3.6m/VLT/Gemini), mid-IR (Spitzer), far-IR (Herschel) and radio (VLA/ATCA) data...
- Optical classifications: 43% NLRG, 33% BLRG/QSO, 24% WLRG
- Most sources are have nuclei of quasar-like luminosity (hidden from our direct view in the radio galaxies)

Deep Gemini imaging of the 2Jy sample

85% of the 2Jy sample show evidence for tidal features at relatively high surface brightness levels.

Ramos Almeida et al. (2011,2012)

AGN activity in major gas-rich mergers

Springel et al. (2005)

Contributions to the UV excess in powerful radio galaxies

Star formation indicators in radio galaxies (2Jy+3CRR samples)

How massive is the gas/dust reservoir?

- Define quasar to have $L_{bol} > 10^{38}$ W (M_B < -23)
- Black hole must accrete >0.2 M_{\odot} yr⁻¹ to maintain activity
- Typical quasar lifetimes: ~10⁶ 10⁸ yr
 →Mass accreted by SMBH over lifetime: ~2x10⁵ 2x10⁷ M_☉
- But, on the basis of the black hole mass/host galaxy correlations, for every 1 M_{\odot} accreted by the black hole, ${\sim}500~M_{\odot}$ stars must be formed in the bulge of the host galaxy

→ The *total* gas reservoir for a particular quasar triggering event is ~10⁸ - 10¹⁰ M_{sun}
 → For typical quasar lifetime of ~10⁷yr predict dust mass ~10⁷ M_☉ for M_{gas}/M_d=100

Determining dust masses using Herschel data for the 2Jy sample

- Initially assume a single temperature modified BB fit
- Preliminary fits to SEDs and colour-colour plots (objects with SPIRE data) → β~1.2
- Determine dust temperatures (T_d) for non-SPIRE objects from 160/100 colour and β =1.2
- Dust masses follow from:

$$M_d = \frac{S_v D^2}{\kappa_v^m B(v, T_d)}$$

Dust mass results

<u>Median dust masses</u>	
	$\log_{10}(M_{d/}/M_{\odot}))$
Radio Galaxies	: 6.8
Local ULIRGs:	7.8
Local Ellipticals	: 5.2
Prediction:	6.8

A minor merger with a gas-rich companion galaxy (~2xLMC) would provide a sufficient reservoir of cool gas to sustain quasar-like activity in a radio galaxy for ~ 10^7 yr; such reservoirs detected in most SLRG.

Triggering of powerful radio-loud AGN in the local Universe: summary

- Powerful radio-loud AGN are associated with massive elliptical galaxies ($2x10^{11} < M_{star} < 2x10^{12} M_{\odot}$)
- Local radio galaxies are diverse in terms of their detailed morphologies, star formation properties, and cool ISM contents
- A small but significant minority (<20%) are triggered in major, gas-rich mergers in which both the supermassive black holes and stellar masses of the host galaxies are growing rapidly
- But the majority of local radio galaxies represent the late time re-triggering of AGN activity via galaxy interactions and/or minor mergers (~2xLMC gas mass)

Jet-induced outflows and (positive?) feedback

Radio-excavated cavities in the X-ray haloes of low luminosity radio sources

DEC

41:32 -41:32 -41:30 -41:29 -3h19m55s 3h19m50s 2h 3h19m45s 3h19m45s

MS0735.6+7421 McNamara et al. (2005) Perseus A Fabian et al. (2003)

Energies associated with the X-ray cavities and shocks: $\sim 10^{59} - 10^{62}$ erg

Neutral and molecular outflows in AGN

Neutral: NaID Rupke et al. (2005)

holecular: OH

1.1

Fisher et al. (2010), Veilleux et al. (2013)

Broad wings detected up to 1,000s km/s in neutral and molecular gas in some AGN; the associated outflows are often more massive and energetic than the ionized gas outflows The jet-driven, multi-phase outflow in the radio-loud Seyfert galaxy IC5063

HI 21cm outflow in IC5063

(z=0.011, P_{5GHz} = 3x10²³ W Hz⁻¹)

HI Outflow:

Ionized gas ([OIII]) outflow in IC5063

A molecular outflow in IC5063?

Morganti et al. (2013)

ESO VLT/ISAAC observations of IC5063

Slit aligned with radio axis

Near-IR (K-band) long-slit spectroscopy of IC5063 covering the H_2 1-0S(1) molecular hydrogen line

Warm molecular outflows in IC5063 I line profiles

Warm molecular outflows in IC5063 II spatial variation in H₂ properties

Acceleration of the molecular gas in IC5063?

- Shocks driven by expanding radio lobes:
 - dense molecular clouds entering the fast shock are accelerated and heated to high temperatures (T>10⁶ K);
 - ionized gas emission lines (T~10⁴ K), then warm molecular emission lines (T~2,000 K), then cold molecular emission lines (T<100 K) emitted as gas cools down.

(But how are the molecules formed?)

- Slow entrainment and ablation of clouds by fast low density wind:
 - clouds simultaneously heated and accelerated as they are entrained in the wind;
 - may lead to the destruction of the clouds...

The alignment effect in high-z radio galaxies: evidence for jet-induced star formation?

The UV continuum structures of high-z radio galaxies $(z\sim1)$ are closely aligned with the radio jet axes in a high proportion of objects

e.g. McCarthy et al. (1987), Rees (1989), Gaibler et al. (2012)

Conclusions

- Although massive giant elliptical galaxies, powerful radio galaxies are diverse in their detailed morphologies, star formation properties and gas contents.
- Most, but not all, powerful radio galaxies in the local Universe represent late-time retriggering of activity via minor gas-rich mergers
- Jet-driven outflows detected in all gas phases; they are sufficiently powerful to affect the evolution of their host galaxies
- The feedback effect of AGN is not necessarily destructive

Optical evidence for star formation in radio galaxies

3C305 YSP Properties Age: 0.4 - 0.6 Gyr Mass:1.5+/-0.5x10¹⁰ M_{sun} (16-40% of total stellar mass) Post starburst **3C459 YSP Properties** Age: 0.05 Gyr Mass:4x10⁹ M_{sun} (>5% of total stellar mass) Starburst (ULIRG)

The young stellar populations (YSP) in radio galaxies show a diversity of properties, but they are detected in only ~20-35% of objects...

The Ages of the YSP in ULIRG and PRG

Typical maximum age of radio source

A simple model for the dust/emission line structures

- Assume that both the emission lines and MFIR emission produced by AGN illumination
- Covering factors of mid-IR and far-IR emitting dust structures, and NLR: C_{mir} , C_{fir} and C_{nlr}

$$L_{24\,\mu m} = 1 \times 10^{-12} L_{[OIII]} \frac{C_{mir}}{C_{nlr}}$$
$$L_{70\,\mu m} = 9 \times 10^{-12} L_{[OIII]} \frac{C_{fir}}{C_{nlr}}$$

Energetic feasibility of AGN illumination

• Allowing for <u>airmodest</u> amount of intrinsic extinction, it is plausible that much of the far-IR continuum is in most radio galaxies is produced by AGN illumination of the NLR clouds

Correlations between MFIR and optical properties

- The 24μm luminosity is strongly correlated with the [OIII]λ5007 emission line luminosity.
- The 70µm luminosity is also strongly correlated with the [OIII] luminosity, but with increased scatter.
- The slopes of the 24μm and 70μm correlations are similar.

Tadhunter et al. (2007), Dicken et al. (2008, 2009, 2010)

The starburst contribution to the far-IR

- The far-IR emitting dust is predominantly heated by AGN illumination
- Starburst heating only significant in a minority of objects (~17 -- 35%)

Tadhunter et al. (2007) Dicken et al. (2009, 2010)

Warm molecular outflows in IC5063 III multi-phase profile comparison

Tadhunter et al. (2014)

Gemini imaging of optically-selected quasar 2 objects

- 20 quasar 2s
- 0.3 < z < 0.41
- $L_{[OIII]} > 10^{35} W$

(Zakamska et al. 2003)

75% of quasar 2s show evidence for tidal interactions

Bessiere et al. (2012)

Why aren't all gas-rich elliptical galaxies quasars?

M_{gas}~3x10⁹ M_{sun}

Centaurus A:

(but gas v. settled in centre: no evidence for major gas inflows)

A large gas reservoir may be necessary, but it's not sufficient for triggering quasar activity...

A dichotomy in AGN triggering mechanisms?

- Spiral galaxies with pseudobulges don't appear to show strong evidence for M_{bh} vs σ relationship
- Suggested that pseudobulges and their black holes form by secular processes (Seyferts?), whereas classical bulges form by gas-rich mergers (quasars?)

Kormendy et al. (2011)

Triggering of moderate luminosity AGN Seyfert: $L_{bol} < 5 \times 10^{37} W$; $\dot{M} \le 0.1 M_{sun} yr^{-1}$

- Deep field studies find no evidence for a higher rate of mergers or interactions in the hosts of moderate luminosity AGN compared with well-matched control samples
- This suggests that secular processes (e.g. bars, disk instabilities, slow cold gas accretion, satellite galaxy accretion) may trigger such AGN

Stellar masses of starburst radio galaxies

Comparison of their stellar masses suggests that only the most massive ULIRGs are capable of becoming radio galaxies

Triggering AGN in galaxy mergers

di Matteo et al. (2005)

AGN activity in major gas-rich mergers

Outstanding issues

- Are there alternative triggering mechanisms for luminous quasar-like AGN (other than mergers)?
- How does the gas get from a ~100pc scale to a sub-pc scale?
- What's the relationship between luminous radioloud and radio-quiet AGN?
- Does the triggering mechanism change with redshift?
- What's the relative energetic importance of the different gas phases in the outflows?
- How do the molecular outflows work in detail?

Future prospects: ALMA

CO observations:

- molecular gas masses: does quasar triggering require a large reservoir of cool gas?

- molecular gas kinematics: to what extent does quasar triggering depend on the kinematical state of the gas.