AGN feedback models: SFR and accretion coevolution arXiv:1407.0685 MNRAS accepted

Rob Thacker Institute for Computational Astrophysics Saint Mary's University, Canada

Credit where credit is due

- Main paper results rely upon J. Wurster's PhD simulations (now Monash), see poster +
- Wurster & Thacker 2013a, MNRAS, 431, 539
 Wurster & Thacker 2013b, MNRAS, 431, 2513

 Unpublished analysis by Maan Hani (MSc student)

Apples and oranges

We've compared temporal evolution with ensemble statistic

Our goal was really to quantify possible scatter in BHAR-SFR correlations Prototype merger

Fiducial res
 = 10⁶+ per galaxy
 (300k gas,
 4×10⁴ M_☉)
 120 pc softening

Low res
 = 2x10⁵ per galaxy
 (40k gas, 3×10⁵ M_☉)
 300 pc softening

See also Wurster & Thacker 2013b, MNRAS, 431, 2513

Closed box expectations of BHAR-SFR coevolution (BHL+Schmidt Law)

Skeletons in the cupboard...

For a single merger we can choose model

Q.1:What evidence is there for a symbiotic connection between AGN activity and star formation?

BH-bulge - 8 (don't agree) 63 (moderately agree) 30 (strongly agree) Vol AGN-SF- 11 (don't agree) 61 (moderately agree) 27 (strongly agree) Theory/mod- 14 (don't agree) 73 (moderately agree) 7 (strongly agree)

mathematical sensitivity is still there
 Can be quantified though (working on it)

Five key components of the models

Model for BH accretion rate

> SPH particle accretion algorithm

> > (Feedback) energy return algorithm

Black hole advection algorithm

> Black hole merger algorithm

Summary(!) of implemented models

Model	Accretion model	SPH accretion	Feedback model	BH advection	BH merger
SDH05 (Springel et al 2005)	BHL	Classic probability	Heating	Lowest local PE	Sound speed criterion
BS09 (Booth & Schaye 2009)	BHL+alpha mod	Prob based on mass	Heating	Lowest local PE	Circular vel criterion
DQMII (DeBuhr et al 2011)	Viscous timescale	Prob based on mass limit	Wind	Massive tracer	Distance only
ONB08 (Okamoto et al 2008)	Drag based	Prob based on mass	Halo heating	Toward max density	Grav bound
WTI2	BHL	Local particles first	Heating	Toward max density	Sound speed criterion
PNK (Power et al 2011)	Accretion disk	Locality	Heating	Toward max density	Sound speed criterion
HPNK (Hobbs et al 2012)	Halo modified BHL	Local particles first	Heating	Toward max density	Sound speed criterion

t_{visc}: impact on BHAR

M↓BH=min(*M↓disc /t↓visc ,M* ↓*Edd*)

Roughly speaking, longer t_{visc} delays and averages out accretion

Inferred evolution for starbursts from Wild et al 2010

BHAR-SFR coevolution for models

Each arrow is 20 Myr of evolution - full tracks are even more complex. Beginning, core merger, and final points are marked.

Motivated by Chen et al 2013

- Total SFR vs BHAR
 - Lag. bin averaging
 - Premerger slight anticorrelation
 - Post-merger close to linear

Four BHL-type variants

See e.g. Diamond-Stanic & Rieke 2012, Lamassa et al 2013

Nuclear BHAR vs SFR

- 2 kpc diameter
 Premerger slight correlation
- Post-merger much stronger correlation
 Unexpected?

Note axes are swapped compared to previous

Outer SFR vs BHAR

- Weaker correlations
- Outer regions less impacted by nuclear activity
- Qualitative
 agreement with
 obs (*i.e.* nuclear
 more strongly
 correlated)

Mass contributions from mergers

What would really help the models?

"Activity functions" (in progress)

Conclusions

- SFR-BHAR coevolution has an inherently complex track (no surprise there!)
 - "Classes" of models qualitatively similar
- Close to linear correlations in some postmerger systems
- BH intermediate mass evolution can still vary considerably even though final M-σ matches
- Significant variation in contribution of mergers to final BH mass

Thanks to SOC & LOC!

Acknowledgements:
James & Maan
NSERC
Canada Research Chairs Program
Canada Foundation for Innovation
Nova Scotia Research & Innovation Trust

