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Menu:

• Need for AGN in cosmological simulations
apart from the fact that black holes are there

• Implementation: Physics versus subgrid physics
• Seeding
• Feeding and merging
• Feedback(ing)

• What can we learn from such simulations?
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Behroozi+10

Supernova feedback 
becomes increasingly 
inefficient

Log Halo Mass

Lo
g 

st
el

la
r 

/ h
al

o 
m

as
s

SN become more 
efficient again? 
(unlikely)
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Need for AGN in cosmological simulations:

Without some additional mechanism massive galaxies:
1.Are too massive
2.Are forming stars at a too high rate
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with AGN

without AGN

Bower+06, Croton+06

Semi-analytics:  AGN causes exponential break



Tom Theuns12Brighter

re
dd

er
massive galaxies have low star formation rates



Tom Theuns13 OWLS sims, McCarthy + 10

SFR in BCG too high - and not enough scatter

Simulation 
without AGN

Simulation 
with AGN
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Dark halos
(const M/L)

galaxies

Feedback from 
AGN

1.quench star formation in galaxies of low-enough 
stellar mass

2.keep it quenched in those more massive

Mission (impossible) for AGN: 
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Menu:

• Need for AGN in cosmological simulations
• (in addition to BHs being there!)

• Implementation: Physics versus subgrid physics
• Seeding
• Feeding and merging
• Feedback(ing)

• What can we learn from such simulations?
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Recent cosmological simulations and their AGN feedback implementation

All inspired by Springel+05
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Black hole seeding

Rees 84, Kocsis & Loeb 13

ULAS J1120
MBH=109 Msun

z=7, t=1Gyr
Mortlock+11

ukirt/eso
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Why does collapsing gas 
not simply make stars?

Primordial stars may eject all gas 
out of mini-halo .. and can’t grow
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Black hole seeding

dark matter halo

• BH probably only can start 
accreting when in dark matter 
halo of a galaxy, i.e. with virial 
temperature  > 104K - not so 
bad?

• BH seed mass comparable to 
or less than particle mass! 
Hence need subgrid BH mass

• no dynamical friction: put BH 
at centre by hand
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Black hole accretion

*

*: typically, rate is multiplied by large factor, 100-3000
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Black hole accretion

gas density

Accretion rate - limit by Eddington

Rate of increase in BH mass

most neglect reduction due to 
radiative efficiency sound speed

relative velocity gas-BH

Bondi radius

*

*: typically, rate is multiplied by large factor, 100-3000
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Accretion rate [log M_sun/yr]

Bondi radius [log kpc]

resolution limit



Tom Theuns22

The ISM stirred by super novae

Creasey+13
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Temperature-density relation in cosmological volume
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ISM becomes 
• star forming
• multiphase

not re
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!
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If you “resolve” the Jeans mass, you can “resolve” accretion onto black holes with mass larger than mass resolution.

Booth & Schaye 09

when not, scale accretion rate to account for insufficient resolution
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Accretion rate on the EoS
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accretion rate implemented using a stochastic approach 
(subgrid mass versus particle mass):

• subgrid mass increases given calculated accretion rate
• particle masses follows subgrid mass by swallowing 

particles stochastically



Tom Theuns27

accretion rate implemented using a stochastic approach 
(subgrid mass versus particle mass):

• subgrid mass increases given calculated accretion rate
• particle masses follows subgrid mass by swallowing 

particles stochastically



Tom Theuns28

• Bondi radius, and hence Bondi accretion rate typically not resolved
• subgrid model?

• Effect of angular momentum (Richard Bower’s talk)

feedback efficiency
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Booth & Schaye 10

however: rate of increase of BH is mostly set by feedback efficiency, rather than accretion rate
once it is self-regulating



Tom Theuns29

Black hole feedback

couples to ISM
• if BH self regulates, injects an amount of energy that 

balances accretion rate onto halo
• parameter       determines black hole mass - but not their 

feedback suppression
• black hole masses cannot be predicted: calibrate  

crucial aspect: how to transfer      to gas?
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Eagle: heat gas to fixed temperature, T = 107.5K, probabilistically

• gas always heats to high temperature: minimise radiative losses
• use reservoir to store energy if not used
• introduces stochasticity

• works well
• massive clusters: need higher heating temperature
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exponential 
end of GSMF

Schaye +14
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sSFR reduced

z=0 colour-magnitude diagram vs GAMA
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Illustris: (Springel+05, ++)

• QSO mode at high accretion rate
• heats surrounding gas

• Radio mode at low accretion rate
• inflate bubbles thermally

• parameters: radius, energy, trigger, location
• Radiative feedback

• active BH ionizes gas, suppressing cooling
	

 	

 requires non-equilibrium calculations
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colour cuts

Vogelsberger +14
too little quenching?
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Massive Black:

• QSO mode at high accretion rate
• heats surrounding gas
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Comparison: hydro simulations
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Comparison: Eagle vs semi-analytics
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Menu:

• Need for AGN in cosmological simulations
• (in addition to black holes existing!)

• Implementation: Physics versus subgrid physics
• Seeding
• Feeding and merging
• Feedback(ing)

• What can we learn from such simulations?
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(Eagle centric view of)

• SN feedback efficiency sets stellar mass at low mass
• galaxy stellar masses cannot be predicted

• AGN feedback efficiency sets accretion rate
• BH masses cannot be predicted

… when self-regulating

• not true for stellar mass at high z
• not true for BH at low BH mass

What we can learn from such simulations.

• No need for selecting 2 feedback “modes” by hand
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• It was not obvious that a relatively simple subgrid model would work
• No obvious inconsistencies with data so far

• mass-metallicity relations most discrepant
• Use simulations to investigate evolution 

• mergers vs in-situ SF, interaction IGM-galaxies, interaction AGN-SF
• Experiments: variation of parameters, degeneracies

• good agreement suggest model reasonably realistic
• Use simulations to check for (self)-consistency of data

What we can learn from such simulations.
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