

CLICK TO ENTER

Tom Theuns

Institute for Computational Cosmology Ogden Centre for Fundamental Physics Durham University, UK and University of Antwerp Belgium

VIRG

Menu:

- Need for AGN in cosmological simulations apart from the fact that black holes are there
- Implementation: Physics versus subgrid physics
 - Seeding
 - Feeding and merging
 - Feedback(ing)
- What can we learn from such simulations?

Abundance

Qi+I0,Behroozi+, Leauthaud+

Institute for Computational Cosmology log Halo mass

Qi+I0,Behroozi+, Leauthaud+

Supernova feedback becomes increasingly inefficient

Behroozi+10

Institute for Computational Cosmology 7

Need for AGN in cosmological simulations:

Without some additional mechanism massive galaxies: I.Are too massive 2.Are forming stars at a too high rate

ICC

Abundance

Semi-analytics: AGN causes exponential break

Institute for Computational Cosmology

Bower+06, Croton+06

massive galaxies have low star formation rates

SFR in BCG too high - and not enough scatter

OWLS sims, McCarthy + 10

Mission (impossible) for AGN:

I.quench star formation in galaxies of low-enough stellar mass2.keep it quenched in those more massive

Institute for Computational Cosmology 14

Menu:

- Need for AGN in cosmological simulations
 - (in addition to BHs being there!)
- Implementation: Physics versus subgrid physics
 - Seeding
 - Feeding and merging
 - Feedback(ing)
- What can we learn from such simulations?

nt cosmological simulations and their AGN feedback implemer

Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe

Mark Vogelsberger¹, Shy Genel², Volker Springel^{3,4}, Paul Torrey², Debora Sijacki⁵, Dandan Xu³, Greg Snyder⁶, Dylan Nelson², and Lars Hernquist²

The EAGLE project: Simulating the evolution and assembly of galaxies and their environments

Joop Schaye,^{1*} Robert A. Crain,¹ Richard G. Bower,² Michelle Furlong,² Matthieu Schaller,² Tom Theuns,^{2,3} Claudio Dalla Vecchia,^{4,5} Carlos S. Frenk,² I. G. McCarthy,⁶ John C. Helly,² Adrian Jenkins,² Y. M. Rosas-Guevara,² Simon D. M. White,⁷ Maarten Baes,⁸ C. M. Booth,^{1,9} Peter Camps,⁸ Julio F. Navarro,¹⁰ Yan Qu,² Alireza Rahmati,⁷ Till Sawala,² Peter A. Thomas,¹¹ James Trayford²

The MassiveBlack-II Simulation: The Evolution of Halos and Galaxies to $z \sim 0$

Nishikanta Khandai¹, Tiziana Di Matteo², Rupert Croft², Stephen Wilkins³, Yu Feng², Evan Tucker², Colin DeGraf⁴, Mao-Sheng Liu² Institute for Computational Cosmology ¹⁶ All inspired by Springel+05

Black hole seeding

ULAS JI 120^{ukirt/eso} M_{BH}=10⁹ M_{sun} z=7, t=1Gyr Mortlock+11

Institute for Computational

massive black hole

Figure 1 Schematic diagram [reproduced from Rees (106)] showing possible routes for runaway evolution in active galactic nuclei.

Rees 84, Kocsis & Loeb 13

18 ЗУ

Greene 12

Black hole seeding

Simulation	FoF Mass	Gas mass	BHS seed mass
	$10^{10}h^{-1}M_{\odot}$	$10^6 h^{-1} M_{\odot}$	$10^5 h^{-1} M_{\odot}$
Eagle	1	1.2	1
Illustris	5	1.2	1
Massive Black	5	2.2	5

- BH probably only can start accreting when in dark matter halo of a galaxy, i.e. with virial temperature > 10⁴K - not so bad?
- BH seed mass comparable to or less than particle mass! Hence need subgrid BH mass
- no dynamical friction: put BH at centre by hand

💵 🕼 🗤 🗤 📭 📭 🎼 🎼 🎼 🎼 🎼

Black hole accretion

*

$$egin{array}{lll} \dot{M}_{
m Bondi} &=& \displaystylerac{4\pi G^2 M_{
m BH}^2
ho}{(c_s^2+v^2)^{3/2}} \ r_{
m Bondi} &=& \displaystylerac{G M_{
m BH}}{c_s^2} \ \dot{M}_{
m BH} &=& \displaystyle(1-\epsilon_r) \dot{M}_{
m Bondi} \end{array}$$

Institute for Computational Cosmol *: typically, rate is multiplied by large factor, 100-3000

Black hole accretion

Institute for Computational Cosmol *: typically, rate is multiplied by large factor, 100-3000

The ISM stirred by super novae

Temperature-density relation in cosmological volume

Institute for Computational Cosmology

ICC

Altay+11

If you "resolve" the Jeans mass, you can "resolve" accretion Booth & Schaye 09

when not, scale accretion rate to account for insufficient resolution

accretion rate implemented using a stochastic approach (subgrid mass versus particle mass):

- subgrid mass increases given calculated accretion rate
- particle masses follows subgrid mass by swallowing particles stochastically

accretion rate implemented using a stochastic approach (subgrid mass versus particle mass):

- subgrid mass increases given calculated accretion rate
- particle masses follows subgrid mass by swallowing particles stochastically

- Bondi radius, and hence Bondi accretion rate typically not resolved
 - subgrid model?
- Effect of angular momentum (Richard Bower's talk)

The impact of angular momentum on black hole accretion rates in simulations of galaxy formation

Y. M. Rosas-Guevara¹^{*}, R. G. Bower¹[†], J. Schaye², M. Furlong¹, C. S. Frenk¹, C. M. Booth³, R. Crain², C. Dalla Vecchia⁴, M. Schaller¹, T. Theuns^{1,5}.

however: rate of increase of BH is mostly set by feedback efficiency, rather than accretion rate once it is self-regulating

Booth & Schaye 10

Black hole feedback

$$\dot{E} = \epsilon_f \epsilon_r \dot{M}_{acr} c^2$$

couples to ISM

- *if* BH self regulates, injects an amount of energy that balances accretion rate *onto halo*
- parameter ϵ_f determines black hole mass but not their feedback suppression
 - black hole masses cannot be predicted: calibrate ϵ_f

crucial aspect: how to transfer \dot{E} to gas?

Eagle: heat gas to fixed temperature, $T = 10^{7.5}$ K, probabilistically

$$ext{probability} = rac{\int_{t_1}^{t_2} \dot{E} dt}{\left(k_{
m B}T/m_{
m h}
ight) M_{
m SPH}}$$

- gas always heats to high temperature: minimise radiative losses
- use reservoir to store energy if not used
- introduces stochasticity
 - works well
 - massive clusters: need higher heating temperature

z=0 colour-magnitude diagram vs GAMA

Trayford +14

Institute for Computational Cosmology 33

ICC

z=0 luminosity function

ICC

Institute for Computational Cosmology 34 Trayford + 4

Illustris: (Springel+05, ++)

Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe

Mark Vogelsberger¹, Shy Genel², Volker Springel^{3,4}, Paul Torrey², Debora Sijacki⁵, Dandan Xu³, Greg Snyder⁶, Dylan Nelson², and Lars Hernquist²

- QSO mode at high accretion rate
 heats surrounding gas
- Radio mode at low accretion rate
 - inflate bubbles thermally
 - parameters: radius, energy, trigger, location
- Radiative feedback
 - active BH ionizes gas, suppressing cooling requires non-equilibrium calculations

Genel+14

Vogelsberger +13

Institute for Computational Cosmology 37

colour cuts

Massive Black:

The MassiveBlack-II Simulation: The Evolution of Halos and Galaxies to $z\sim 0$

Nishikanta Khandai¹, Tiziana Di Matteo², Rupert Croft², Stephen Wilkins³, Yu Feng², Evan Tucker², Colin DeGraf⁴, Mao-Sheng Liu²

QSO mode at high accretion rate heats surrounding gas

Khandai+14

Institute for Computational Cosmology 40

Khandai+14

Institute for Computational Cosmology 41

Comparison: hydro simulations

Institute for Computational Cosmology 42

Comparison: Eagle vs semi-analytics

ICC

neuns

Menu:

- Need for AGN in cosmological simulations
 - (in addition to black holes existing!)
- Implementation: Physics versus subgrid physics
 - Seeding
 - Feeding and merging
 - Feedback(ing)
- What can we learn from such simulations?

(Eagle centric view of)

What we can learn from such simulations.

• SN feedback efficiency sets stellar mass at low mass

- galaxy stellar masses cannot be predicted
- AGN feedback efficiency sets accretion rate
 - BH masses cannot be predicted

... when self-regulating

• not true for stellar mass at high z

• not true for BH at low BH mass

• No need for selecting 2 feedback "modes" by hand

What we can learn from such simulations.

- It was not obvious that a relatively simple subgrid model would work
- No obvious inconsistencies with data so far
 - mass-metallicity relations most discrepant
- Use simulations to investigate evolution
 - mergers vs in-situ SF, interaction IGM-galaxies, interaction AGN-SF
- Experiments: variation of parameters, degeneracies
 - good agreement suggest model reasonably realistic
- Use simulations to check for (self)-consistency of data

47

CLICK TO ENTER

Tom Theuns

Institute for Computational Cosmology Ogden Centre for Fundamental Physics Durham University, UK and University of Antwerp Belgium

VIRG