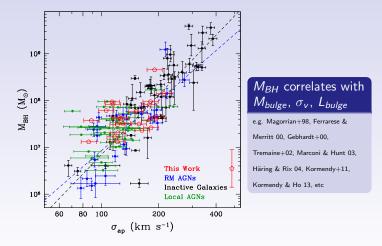
Black hole accretion preferentially occurs in gas rich galaxies

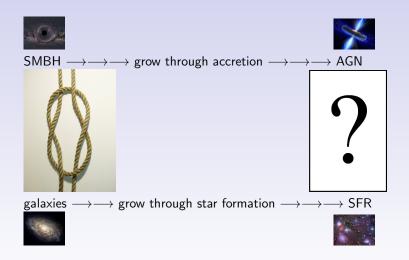
Fabio Vito Dipartimento di Fisica e Astronomia - Università di Bologna INAF-OABo fabio.vito@unibo.it

F. Vito, R. Maiolino, P. Santini, M. Brusa, A. Comastri, G. Cresci, D. Farrah, A. Franceschini, R. Gilli, G. L. Granato, C.

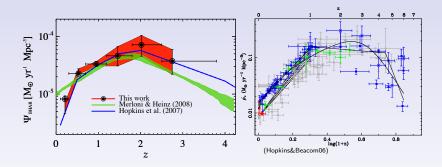
Gruppioni, D. Lutz, F. Mannucci, F. Pozzi, D. J. Rosario, D. Scott, M. Viero, C. Vignali; 2014, MNRAS, 441, 1059

Outline


2 Sample selection and parameter derivation


4日 + 4回 + 4目 + 4目 + 10 - 900

A connection between SMBH and galaxy properties


(日)

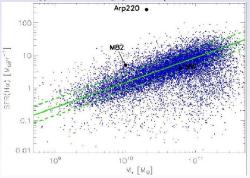
⁽Bennert et al. 2011)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

SMBH accretion and SFR have similar redshift evolution

nac

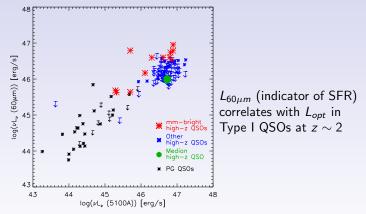
(Delvecchio+14; see also Boyle&Terlevich 98,

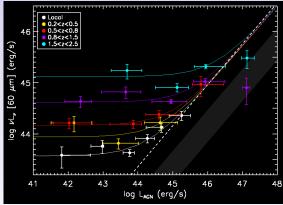

Granato+01, Marconi+04, Hopkins&Beacom

06, Silverman+09, Aird+10)

AGN and galaxies share a COmmon EVOLUTION.

A more direct connection between AGN and the star formation?


Are AGN equally found in all types of galaxies (quiescent/star forming/starbursting galaxies)?

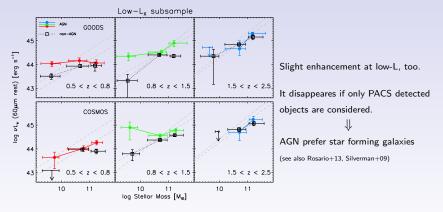

(Elbaz et al. 2007)

Introduction

High-luminosity regime

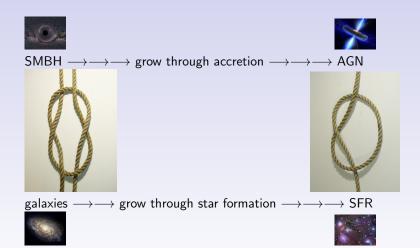
(Lutz+08, see also Netzer+07)

(Rosario+12, see also Shao+10)

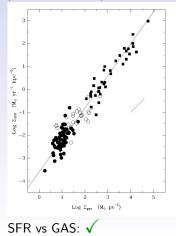

 $L_{60\mu m}$ used as an indicator of SFR

Two modes of AGN evolution? (see e.g. Lutz+08,

Shao+10, Rosario+12,+13, Santini+12,+14)

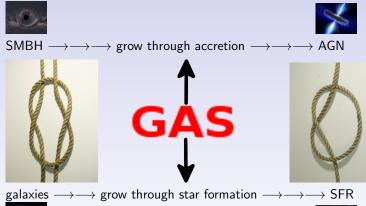

- Wet merger driven at high L_{AGN} (AGN coupled with SF)
- Secular processes at low L_{AGN} (AGN not correlated with SF)

AGN reside preferentially in main sequence galaxies


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

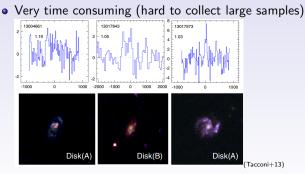
A more fundamental property

 $\Sigma_{SFR} \propto \Sigma_{H2}^{1.5}$


(Schmidt 1959, Kennicutt 1998)

$L_{AGN} \propto \dot{M}_{GAS}$

SAC


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Measuring M_{gas}

CO-to- H_2 conversion factor

$$\alpha_{CO} = \frac{M_{H_2}}{L_{CO}} \qquad \qquad CO \ J = 1 \to 0$$

but..

Measuring M_{gas}

Alternatively, dust-to-gas ratio

 $M_{gas} = \frac{M_{dust}}{DGR}$

$$M_{gas} = M_{H_2} + M_{HI}$$

see e.g. Eales+10, Leroy+11, Magdis+12, Scoville+12

How does it work?

- M_{dust} from FIR/sub-mm SED fitting
- M_{*} from UV-to-nearIR SED fitting
- Metallicity from FMR (Mannucci+10,+11)
- Assuming the local DGR-Z relation (Leroy+11 and references therein)

Caveats:

- Uncertainties on M_{dust} (and M_*)
- Assuming local DGR-Z relation does not evolve (confirmed by e.g. Mannucci+10, Cresci+12, Nakajima+12, Henry+13, Belli+13)
- Indirect measurement of metallicity

Measuring M_{gas}

Alternatively, dust-to-gas ratio

 $M_{gas} = \frac{M_{dust}}{DGR}$

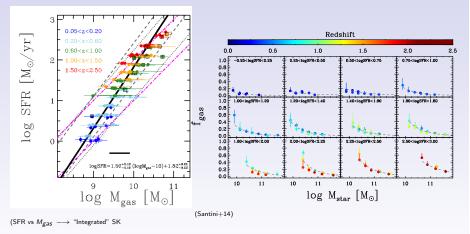
$$M_{gas} = M_{H_2} + M_{HI}$$

see e.g. Eales+10, Leroy+11, Magdis+12, Scoville+12

How does it work?

- M_{dust} from FIR/sub-mm SED fitting
- M_{*} from UV-to-nearIR SED fitting
- Metallicity from FMR (Mannucci+10,+11)
- Assuming the local DGR-Z relation (Leroy+11 and references therein)

Caveats:


- Uncertainties on M_{dust} (and M_*)
- Assuming local DGR-Z relation does not evolve (confirmed by e.g. Mannucci+10,

Cresci+12, Nakajima+12, Henry+13, Belli+13)

• Indirect measurement of metallicity

Introduction

Gas content in galaxies (from dust)

relation, see also Daddi+10)

Introduction

Goal of this work

Is the gas content in AGN-hosting galaxies different than in inactive galaxies?

Black hole accretion preferentially occurs in gas rich galaxies

Sample selection and parameter derivation

Data set

- Data from COSMOS, GOODS-South and GOODS-North fields.
- Herschel FIR data from PEP (100 and 160 μm; Lutz+11, Berta+11) and HerMES (250, 350 and 500 μm; Oliver+12, Roseboom+10,+12) SURVEYS.
- Multiwavelength coverage from X-rays to IR and redshifts (Alexander+03,

Bauer+04, Grazian+06, Ilbert+09, Santini+09, Brusa+10, McCracken+10, Berta+11, Salvato+11, Xue+11, Civano+12)

Black hole accretion preferentially occurs in gas rich galaxies

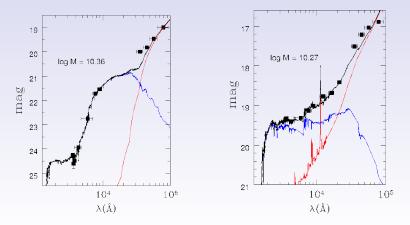
Sample selection and parameter derivation

AGN and galaxy samples selection

Parent sample selection:

- $SNR \ge 10$ in the K band
- $2 \quad z \leq 1$

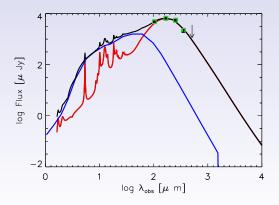
AGN classification:


- X-ray detected objects
 - Optical spectroscopy classification (Bauer+04, Brusa+10, Civano+12, Xue+11)

- SED classification (Salvato+11)
- X-ray classification (Bauer+04, Brusa+10, Civano+12, Xue+11)
- X-ray undetected objects
 - IRAC colours (Donley+12 criterion)

otherwise galaxy

Parameters derivation: M_*


UV-to-nearIR photometry fitted with a combined library of synthetic stellar templates (Bruzual&Charlot 03) and AGN templates (Silva+04; only for AGN) as in Santini+12.

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ の Q (

Parameters derivation: M_{dust}

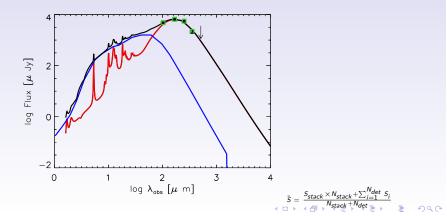
Herschel FIR photometric points fitted with a combined library of dust emission (Draine&Li 07) and AGN templates (Silva+04; only for AGN).

Sample selection and parameter derivation

Parameters derivation: M_{dust}

 $\mathsf{BUT}...\mathsf{small}$ fraction of sources (the most luminous in FIR) individually detected by Herschel

Low statistics and luminosity/mass bias

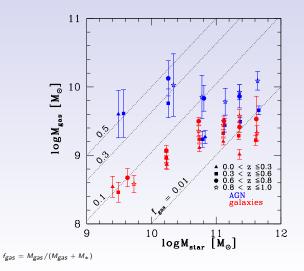

JL

Stacking Herschel fluxes (in bins of stellar mass and redshift) to increase statistics and luminosity completeness (see also Shao+10, Rosario+12, Santini+12,+13)

z	$\log(M_*/M_{\odot})$					
	9-10	10-10.5	10.5-11	11-11.25	11.25-11.5	11.5-12
0.0-0.3		•				
0.3-0.6						
0.6-0.8						
0.8-1.0						

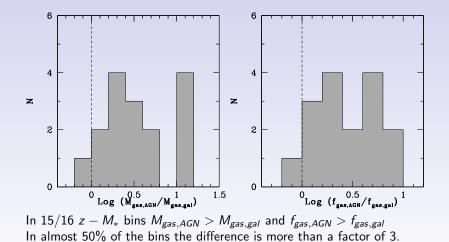
Parameters derivation: M_{dust}

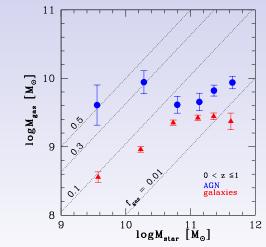
- $\mathbf{0} \geq 10$ objects in the bins
- $\mathbf{Q} \geq 3\sigma$ detection of the stacked flux for at least 3 Herschel bands
- $\Im \geq 3\sigma$ detection for at least 1 Herschel-SPIRE band (350 and/or 500 μ m)


accounted for.)

Sample selection and parameter derivation

Parameters derivation: M_{gas}


 $I M_{gas} = M_{dust} / DGR$ (e.g. Eales+10, Leroy+11, Magdis+10,+12, Scoville+12) 2 $DGR = 0.01 \times 10^{Z-Z_{\odot}}$ from Draine+07, assuming local relation (many works suggest it does not evolve) **3** $Z = 12 + \log(O/H) = f(M_*, SFR)$ (Mannucci+10,+11) 9 12+log(0/H) 8.5 8 7.5 q $\log(M_{\bullet}) - 0.32 \log(SFR)$ (a) $SFR = 1.8 imes 10^{-10} L_{8-1000\,\mu{
m m}}$ (~ Papovich+07, Bell+05. "Unobscured" SF not


Main result

| □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ● ④ ♥ ♥

No clear trend with redshift \longrightarrow average over all redshift bins to gain statistics

・ロト ・虚ト ・ほト ・ほト

æ

Discussion and conclusions

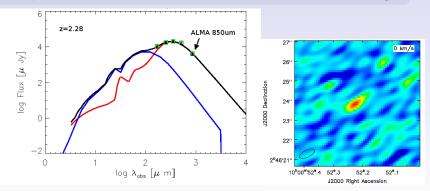
Discussion and conclusions

Black hole accretion preferentially occurs in gas rich galaxies

as tentatively suggested by many authors (e.g. Silverman+09, Santini+12, Rosario+12,+13), but NOW WE SEE IT!

Not really surprising: more gas \longrightarrow statistically easier that a gas cloud falls into the potential of the SMBH.

No need to invoke specific triggering mechanisms (but supporting triggering mechanisms due to disk instabilities, enhanced in gas-rich disks).


It also naturally explains why AGN preferentially reside in star forming galaxies.

However, AGN - SFR relation is less clear (additional spread introduced by SK relation, contribution of triggering mechanisms that affect the SF efficiency).

Discussion and conclusions

Future perspectives

ALMA observations (e.g. in COSMOS) can provide further constraints on the sub-mm/mm dust emission in galaxies and AGN, allowing us to relax the requirements on Herschel data and to explore a wider redshift range

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで