

# Tracking AGN activity following a starburst



Vivienne Wild

Kate Rowlands, Milena Pawlik, Peter Johansson, Jakob Walcher Nicole Nesvadba, Angela Mortier, Matt Lehnert, Bruce Sibthorph Stephane Charlot, Tim Heckman, Guinevere Kauffmann



#### (Post)-starbursts in bulges at z~0





Wild et al. 2010a, MNRAS

#### (Post)-starbursts in bulges at z~0





# Vivienne Wild

#### (Post)-starbursts in bulges at z~0



- \* 400 strongest (post)-starburst bulge-galaxies in local Universe
  - 0.01 < z < 0.07 (3" SDSS fibre => 0.6 4 kpc diameter)
  - Stellar surface mass density > 3 x  $10^8$  M  $_{\odot}$  /kpc<sup>2</sup> (where majority of L[OIII]<sub>AGN</sub> originates)
  - Complete sample to 600Myr: constant number per unit starburst age
  - No broad line AGN

Wild et al. 2010a, MNRAS

#### The growth of black holes



2003

What type of star formation history is associated with highest mean rate of black hole growth?

(mean growth of black holes: M/M)



- Increasing black hole growth rate with increasing SFR/Mgal
- ★ 50% of black hole growth is accounted for by only ~200 bulges (/ 33000)
  - distributed throughout the starforming, starburst and post-burst classes
  - 7% of SF bulges, 15% of PSB bulges, 29% of SB bulges
  - a recent starburst is a helpful, but not necessary, condition for low-z black hole growth

Wild et al. 2007

#### Zoom-in on (post-)starburst galaxies





- \* Low mass stars (slow ejecta) dominate mass loss
- \* Accretion commences when fast ejecta have decayed
  - Feedback from fast stellar ejecta prevents accretion?
  - Dynamical delay of gas infall? (Hopkins, 2011)

Wild, Heckman, Charlot 2010

#### Zoom-in on (post-)starburst galaxies





- \* Low mass stars (slow ejecta) dominate mass loss
- \* Accretion commences when fast ejecta have decayed
  - Feedback from fast stellar ejecta prevents accretion?
  - Dynamical delay of gas infall? (Hopkins, 2011)

Wild, Heckman, Charlot 2010

#### The impact of SNe winds in the GC

Vivienne Wild



#### Will Lucas (St Andrews) (with Diego Falceta-Gonçalves, Ian Bonnell)

Mass resolution:  $2M_{\odot}$ ; central potential with nuclear star cluster, nuclear stellar disk and bar; SMBH sink particle:  $4x10^{6}M_{\odot}$ ; SNe rate to match SFR in GC ( $0.1M_{\odot}/yr$ )

#### What we think/believe...



erc

**Vivienne Wild** 

Dave Alexander, Monday

#### Effect: Where are they going to?



Cause: Where did they come from?



# Wild, Walcher, Johansson et al. 2009

3.0

#### Cause: post-starburst = post-merger







- \* Clear decrease in visually identifiable post-merger signatures with age
  - From ~50% to ~20% of objects, as expected for fading low surface-brightness structures
- ★ Beware of automated measurements for identifying post-mergers!



Pawlik et al. in prep

#### (Lack of) Effect: Down-the-barrel outflows





★ ~few hundred km/s outflows, in all age bins, especially face-on

• No evidence for changing outflow velocity with starburst age

Elizabeth Cooke (now in Nottingham)

## **Cold gas and dust properties**

 IRAM CO(1-0) and (2-1) + Herschel (PACS+SPIRE) observations of 11 galaxies along the (post-)starburst sequence erc

**Vivienne Wild** 

Starburst ages of <20Myr to 1Gyr</li>





#### SFR vs. cold gas supply



- ★ No evidence for expulsion of gas, either by starburst or AGN
- ★ Slow decline in gas supplies over ~500Myr? Needs more data....



#### SFR efficiency





- ★ Gas depletion time increases linearly
- ★ Less efficient star formation at later times



#### **Changing ISM conditions**





- ★ Steady decline of dust temperature
- ★ Dust created and destroyed
- \* No clear impact of AGN (but need larger samples)



Rowlands et al. in prep

# Vivienne Wild

## **Changing ISM conditions**



- ★ Steady decline of dust temperature
- ★ Dust created and destroyed
- \* No clear impact of AGN (but need larger samples)



## Summary & Conclusions

- \* Recent starburst: helpful, but not necessary, condition for low-z BH growth
- ★ 250Myr delay between end of starburst and peak BH growth
- \* All theories/simulations so far suggest SNe winds should feed BHs

#### **Cause of starburst**

- ★ >50% local strong post-starburst = post-merger
  - Good, otherwise difficult to explain such strong starburst in local massive galaxies

#### **Effect of starburst/AGN**

- ★ No evidence for change in ISM outflow velocity
- \* No evidence for expulsion/disruption of global cold gas supply
- ★ ISM conditions steadily normalise following starburst:
  - Dust fraction and temperature declines with time
  - Requires dust formation in SNe + subsequent destruction of dust in ISM

"Fast" quenching: Merger⇒starburst⇒post-starburst (AGN?) ⇒ "red and dead" galaxies?

★ >600 Myr? is this scenario even relevant at low-z?

