

AGC: Active Galactic Clump?

Anita Zanella

with E. Le Floc'h, E. Daddi, F. Bournaud, R. Gobat et al.

CEA Saclay – SAp

Durham, July 29th, 2014

Introduction

How do SMBHs and AGNs form and grow?

galaxy mergers (Di Matteo+ 05, Hopkins+ 06)

disk instability-driven accretion (Kocevski+ 12,

Bournaud+ 14)

Where do they form? central nuclei

off-centered (e.g., in giant gas-rich clumps, Schawinski+ 11, Bournaud+ 11)

Schawinski+ 11

Introduction

Black hole activity at high z mainly takes place in **star forming** galaxies (Mullaney+ 11a)

Star forming galaxies at z>1 often have rotating disks (Genzel+ 11) high gas fractions (~50%, Daddi+ 10) clumpy morphologies (Genzel+ 11)

Introduction

Scenario (Dekel+ 11, Bournaud+ 14)

- Violent disk instability fragments high z disks into clumps
- Seeds of SMBHs form inside dense giant clumps
- Clumps migrate into the center of the galaxy

Ingredients

- 1) spatial resolution **AGN** probe: emission line diagnostics
- 2) spatial resolution probe of stellar mass distribution
- 3) spatial resolution probe of star formation distribution

Bournaud+ 14

Sample

68 **[OIII] emitting** galaxies at $1 \le z \le 2$ [OIII] = AGN indicator

Observations: WFC3 on board HST Slitless spectroscopy: G_{141} ($\lambda = 0.8 - 1.2 \mu m$) Imaging: near-IR (F140W, F105W) UVIS (F606W) Pointed at CL J1449+0856 cluster (Gobat+ 13)

Slitless spectroscopy: 6.4 arcmin²

Emission line maps

[OIII] emission line maps

F140W direct images

Emission line maps

The case of ID568: off-nuclear [OIII], Hβ and [OII] emissions

GALFIT decomposition: diffused **disk** + off-nuclear **clump** Offset **significance** ~ 8σ

AGN hypothesis

MEX DIAGRAM (Juneau+ 14): in the AGN region

AGN off-nuclear?

Check also with new data

Subaru/MOIRCS (spectroscopic follow up)

Chandra (150ks)

AGN hypothesis

Continuum emission

No detection of the clump in the continuum

Upper limits on the continuum flux: simulations with GALFIT (Peng+ 08)

 $EW = \frac{F_{line}}{F_{continuum}}$ Lower limit

 $EW_{[OIII]} \ge 1700 \text{ Å} >> typical EW_{[OIII]} \text{ of AGNs} (~50-100 \text{ Å template values})$

SF clump hypothesis

Extremely young clump

Starburst99 models

 $Z \sim 0.4 Z_{o}$ Age < 10 Myr SFR ~ 25 M_o/yr M_{*} $\leq 10^{8}$ M_o M_{gas} ~ 3 $\cdot 10^{9}$ M_o sSFR $\geq 2.5 \cdot 10^{-8}$ yr⁻¹ Re ≤ 0.5 kpc (unresolved)

Simulations

sSFR clump A = 10x sSFR other clumps

t = 0 birthtime clump A

t = 12 Myr observed time for the M_{\star} and SFR map

clumps B, C, D are older (100 – 300 Myr)

First insights on the collapse phase

1. Direct evidence of clumps' formation phase

Genzel+ 11

Wuyts+ 13

ID568

2. Newly born clumps behave like **mini-starbursts** $\frac{1}{5}$

```
\begin{array}{l} \text{sSFR} \thicksim 50\text{x} \; \text{sSFR}_{\text{gal},\text{MS}} \\ \text{SFE} \thicksim 10\text{x} \; \text{SFE}_{\text{gal},\text{MS}} \end{array}
```


- 3. Constraints on **clumps formation rate** (~2 clumps/Gyr) and **lifetimes** (~500Myr)
 - \rightarrow clumps do survive stellar feedback

Future developments

Kinematics constraints with Sinfoni IFS (DDT accepted proposal)

Detailed analysis of the rest of the sample

- sSFR changes between initial collapse and longer term evolution?
 → constraints on stellar feedback role
- clumps formation rate? \rightarrow constraints on the clumps' lifetime
- **age** gradient? \rightarrow constraints on clump migration

Increase of the statistics analyzing other fields

Looking for off-nuclear AGNs.....

Off-nuclear AGN

- X-rays detection
 - log(EW(H β) [Å]) ... 0 EW_[OIII]< 500 Å 1.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
 - ence z=2.3 ence z=0 AGN 1.0 (gH\[III0])eoI **BPT AGN** 0.5 0.0 -0.5Star Forming -0.5 0.0 -1.5-1.0

SSP Constant SFR SFH initial burst

EW(HR) > 248.1

0.5

log(age [Myr])

3.0

- $loa([NII]/H\alpha)$ IFS: unresolved broad emission lines (FWHM_{Ha} > 1000 km s⁻¹)
- Continuum detection

No X-rays detection

EW_[OIII]>> 500 Å (if young)

BPT SF •

- IFS: unresolved narrow emission lines (FWHM_{Ha} < 500 km s⁻¹)
- No continuum detection (if young)

Summary

Do AGCs exist?

- We considered a sample of 68 [OIII] emitters at $1 \le z \le 2$
- We created spatially resolved emission line maps
- The case of ID568: bright off-nuclear [OIII] without a continuum counterpart

1.0

0.0

-0.5 -10

6([0III]/Hβ) 0.5

10.0

1.0

108

SFR

- It seems not to be a off-nuclear AGN
- It likely is an extremely young star forming clump
- It is the first direct observation of the clumps' formation phase 100.0
- Young clumps behave like ministarbursts
- Clumps do survive stellar feedback

