



### Positive AGN feedback on turbulent gas

Kastytis Zubovas, Centre for Physical Sciences and Technology, Vilnius Sergei Nayakshin & Martin Bourne, University of Leicester

# Context: AGN feedback

- AGN feedback on galactic ISM can come in four flavours:
  - Radio-mode negative feedback: jets heat the ISM and prevent fragmentation (e.g. McNamara & Nulsen 2007)
  - Radio-mode positive feedback: jets create shockwaves that facilitate fragmentation (e.g. Gaibler et al. 2011)
  - Quasar-mode negative feedback: powerful outflows remove gas from the galaxy, starving it of fuel for star formation (e.g. di Matteo et al. 2005)
  - Quasar-mode positive feedback: powerful outflows compress gas and induce star formation (e.g. Zubovas et al. 2013)
- All four modes probably important at different stages of galactic evolution

## Context: AGN feedback

- Typically, low-density gas is expelled, while highdensity gas can be compressed and fragment (Nayakshin & Zubovas 2012)
- Both expulsion and compression can happen at the same time in different parts of the galaxy (Zubovas et al. 2013)
- In order to simulate this, we need to resolve the density structure, otherwise even qualitative behaviour remains uncertain

## **Context: numerical simulations**

- Galaxy evolution simulations often probe cosmological scales (~Mpc or larger)
- Linear resolution ~kpc, mass resolution ~10<sup>6</sup>
  M<sub>Sun</sub> or worse (e.g. OWLs, Illustris)
- ISM structure hardly (or not at all) resolved, low density contrasts, compression and fragmentation underpredicted
- Our goal: to explore the importance of resolution in galaxy-scale feedback models

# Simulation setup

- Spherical shell surrounding an AGN; idealised initial conditions
- Shell parameters:  $R_{in}$  = 200 pc,  $R_{out}$  = 2 kpc, M = 5\*10<sup>9</sup> M<sub>Sun</sub> (f<sub>g</sub> = 0.16)
- Turbulent velocity spectrum with  $\sigma$  = 200 km/s, allowed to evolve for 1 Myr
- AGN: M =  $2*10^8$  M<sub>Sun</sub> radiating at L = L<sub>Edd</sub> for t<sub>q</sub> = 1 Myr
- Three resolutions  $-10^3$ ,  $10^4$  and  $10^6$  particles in the shell
- Test 1: Sink particles form when n > 10 + 0.02 (T/10 K)<sup>3</sup> cm<sup>-3</sup>, corresponds to  $M_J < 10 m_{SPH}$  in high-res model
- Test 2: Sink particles form when  $M_{\rm J}$  < 10  $m_{\rm SPH}$  for each model





## Gas morphology



## Gas density distribution



#### Fragmentation and SMBH feeding



#### Fragmentation and SMBH feeding



## Sink particle dynamics



## **Outflow fragmentation - summary**

- Low-res simulations:
  - Mostly coherent outflow
  - Sink particles form in rapidly outflowing gas
  - Central void in both gas and sink particle distributions
  - SMBH feeding by stray sink particles

- High-res simulation:
  - Highly uneven gas density distribution
  - Sink particles form
    both in outflowing and
    inflowing gas
  - Lack of central void
  - SMBH feeding by gas flows

# Summary

- Positive AGN feedback can cause starbursts comparable in magnitude to those observed in AGN
- Low (cosmological) resolution numerical simulations do not produce self-gravitating gas clumps and hence underpredict the SFR
- As a result, AGN feedback in such simulations is more negative than in higher-resolution simulations or in reality
- Convergence of numerical simulations not achieved yet (6\*10<sup>7</sup> particle simulation ongoing!)
- Effects of AGN feedback in galactic evolution simulations
  must be considered with extreme caution