Global Calibration

Direct Calibration

- Make absolute calibration for each tile
- Use existing data eg 2MASS
 - (colour scatter too large?)
- Nightly standards
- Hard to get better than 0.01 mag calibration on individual photometry

Methods - Edge matching

- Given set of overlapping tiles with differing unknown zero-points C_i
- Calculate observed offset for each overlap T_{ij}
- Find the set of tile zero-points that minimize the scatter between the expected offset (C_i-C_j) and observed overlap offsets T_{ij}
- Iterative solution (Maddox et al)
- Matrix inversion (Glazebrook et al)

Edge Matching

- Requires absolutely no flatfield errors
- Radial errors mean that edges don't match the centre
- Generally a mix of modes

- Gradients propagate across the whole survey
- Random errors also introduce gradients through random walk 10% of each overlap error
- Iterative method can be stopped before convergence – if starting from uniform zeropoints this reduces gradients

External ties

- Use direct calibrations as tie-points in overlap matching
- Reduces gradients
- Gives absolute calibration
- Can vary the weight relative to the overlaps
- Average over different systematics

External ties

- Observe new calibrations?
- Use a grid like DES?

Or use a non-connected random coverage?

Target accuracy

- Aim for map with rms of 0.001 mags
 - wildly optimistic....
- Check flat-fielding
 - in overlaps
 - stacked source counts
- Check global calibration
 - Cross-correlate counts with tile mosaic
- Need 0.01 rms per overlap
- Assuming 0.1 per galaxy need only 100 galaxies