The changing relationship between galaxy stellar mass and dark matter halo mass since $z=2$

David Wake1 (david.wake@yale.edu)

Katherine Whitaker2, Ivo Labbé3, Pieter van Dokkum4, Marjin Franx5, Ryan Quadri6, Gabriel Brammer7, Mariska Kriek7, Britt Lundgren8, Danilo Marchesini9, Adam Muzzin10, Rachel Bezanson1

1Yale University, 2Sterrewacht Leiden, 3ESO-Chile, 4Harvard-Smithsonian Center for Astrophysics, 5Carnegie Observatories, 6Tufts University

Introduction

Relating galaxy properties to those of their dark matter halos

If we wish to understand galaxy formation in a cosmological context it is crucial that we observationally relate the properties of galaxies to those of the dark matter halos in which they reside. This has been done very effectively in the local universe (e.g. Li et al. 2008, Zhehavi et al. 2011) and even up to $z = 1$ (e.g. Zheng et al. 2007), but little is known at $z > 1$ where the star formation rate is peaking and massive galaxies seem to be forming most of their mass.

Galaxy clustering

One highly effective means of relating galaxies to their parent dark matter halos is through an analysis of their clustering. The more massive a halo the more strongly it clusters; thus, since the dark matter is dominating the mass distribution one can infer that a more clustered galaxy population lives in more massive halos.

Halo occupation distributions

It is possible to accurately model the clustering and space density of galaxies by placing galaxies in dark matter halos following a simple yet flexible analytic form that depends on the mass of the halo. These analytic forms are known as halo occupation distributions (e.g. Cooray & Sheth 2003). It is assumed that galaxies in halos are either centrals or satellites with different mass thresholds determining when halos begin to host a central or satellite galaxy.

We have measured the stellar mass dependent clustering of massive galaxies at $1 < z < 2$ demonstrating that the trend whereby the clustering amplitude increases as the stellar mass increases extends to these early times. By fitting halo models to these clustering measurements, along with similar measurements at z=0.1, we are able to determine how the relationship between galaxy stellar mass and dark matter halo mass evolves from $z = 2$ to the present. Using these relationships we demonstrate that the most efficient halo mass for forming stars increases at higher redshift (`halo downsizing') and that there exists a strong dependence of the stellar mass growth rate of galaxies on both their stellar and halo masses.

Stellar mass dependent clustering at $1 < z < 2$

Angular 2 point correlation function

The clustering amplitude increases as the stellar mass threshold increases in each of the redshift intervals. The amplitude is significantly higher on both large and small scales.

Halo model fits

The dashed lines in the plot above show the best fitting halo model to each of the clustering measurements.

Stellar mass - dark matter halo mass relation

The best fitting halo occupation distributions, fit to both the clustering and space density of our mass limited samples, allow us to easily determine how the stellar mass of central galaxies depends on the mass of the halos in which they reside. The plot shows this relation derived from the fits to the $1 < z < 2$ clustering measurements from the NMBS. Also shown is the same relation derived from fits to the clustering of galaxies in the SDSS at different stellar mass thresholds.

The dependence of stellar mass growth on stellar and dark matter halo mass

The fraction of stellar mass in place in galaxies at $z=1.5$ decreases from over 50% for galaxies with masses $>10^9 M_\odot$ at $z=0.1$ to just over 10% for galaxies with masses $<10^9 M_\odot$ at $z=0.1$. At the same time the halos in which the galaxies reside at $z=0.1$ have between 25 and 30% of their mass in place at $z=1.5$ with the lowest mass halos growing the least over this time.

Linking galaxies from high to low redshift

By combining the measured relationships between the median stellar mass of central galaxies and halo mass at redshifts 0.1 and 1.5 we can estimate the typical stellar mass growth and how it depends on both halo and stellar mass (Zheng et al. 2007). For a halo of a given mass at $z = 0.1$ we use the halo merger tree algorithm of Parkinson et al. (2008) to determine the median halo mass of its most massive progenitor halo at $z = 1.5$. We can then compare the typical stellar mass of a central galaxy in the halo at $z = 0.1$ with the stellar mass of its central in its most massive progenitor halo. In an average sense we can then determine how the mass has changed from $z = 1.5$ to the present day.

References

Whitaker, K. E., et al. 2011, ArXiv e-prints

Data

Newfirm Medium Band Survey

The NEWFIRM Medium Band Survey (NMBS) (Whitaker et al., 2011) includes medium-band NIR (J,1J,2J,H,2J,K) optical broad (griz) and medium bands, IRAC imaging and MIPS 24μm data over 4.4 deg2 in the COSMOS and AEGIS fields. The inclusion of the NIR medium band filters greatly increases the photometric redshift accuracy at 1.3 < z < 3 by a factor of \sim4 to $\sigma_z/(1+z)$ < 0.02.

Photo-z and SED fitting

Photometric redshifts for all galaxies were calculated using the EAZY code (Brammer, van Dokkum, & Coppi 2008). Stellar masses were computed using FAST (Kriek et al. 2009), from Bruzual & Charlot (2003) models with solar metallicity and a Chabrier (2003) IMF, closely matching the stellar mass determination for the SDSS samples.

Local Galaxies – SDSS

For a local reference sample we use publicly available catalogs from the SDSS DR7 (Abazajian et al. 2009). We define several volume limited samples complete in stellar mass including galaxies from 0.04 < z < 0.1. These samples are derived from the large scale structure samples of the NYU-Value Added Galaxy Catalogue (Blanton et al. 2005). Stellar masses are taken from the catalog provided by the MPA-JHU group (https://www.mpia.de/vac/SDSS/DR7/), which used of the Bruzual and Charlot (2003) SPS models.