Galaxy Structure & Mode of Star Formation in the SFR-Mass Plane from z ~ 2.5 to z ~ 0.1

by Stijn Wuyts, PEP & CANDELS team

Abstract
We analyze the dependence of galaxy structure (size and Sersic index) and mode of star formation (Σ_{SFR} and SFR_{IR}/SFR_{UV}) on the position of galaxies in the SFR versus Mass diagram. Our sample comprises roughly 600,000 galaxies at z ~ 0.1, 100,000 galaxies at z ~ 1, and 25,000 galaxies at z ~ 2. Structural measurements for all but the z ~ 0.1 galaxies are based on HST imaging, and SFRs are derived using a Herschel-calibrated ladder of SFR indicators. We find that a correlation between the structure and stellar population of galaxies (i.e., a 'Hubble sequence') is already in place since at least z ~ 2.5. At all epochs, typical star-forming galaxies on the main sequence are well approximated by exponential disks, while the profiles of quiescent galaxies are better described by de Vaucouleurs profiles. In the upper envelope of the main sequence, the relation between the SFR and Sersic index reverses, suggesting a rapid build-up of the central mass concentration in these starbursting outliers. The coexistence of quiescent, moderately and highly star-forming systems over an order of magnitude in size evolution and increasing zeropoint of the MS with redshift, the dependence of galaxy structure and mode of star formation on location in the SFR-Mass plane is strikingly similar at all epochs probed.

Instruments
- Sersic profile fits to deep WFC3 H_{160} imaging in UDS and GOODS-S, and to ACS z850 and I_{814} imaging in GOODS-N and COSMOS respectively.
- SFRs from cross-calibrated SFR_{UV+PACS}, SFR_{UV+MIPS}, and SFR_{SED} modeling.
- Stellar masses from SED modeling using Bruzual & Charlot (2003)

Mode of Star Formation
At all epochs, iso-Σ_{SFR} contours run diagonally in SFR-Mass space. Σ_{SFR} correlates better with SFR/M than with SFR or M separately (see also Schiminovich et al. 2007 at z~0.1). The relative amount of obscured star formation increases as we move along the MS to higher masses, or across the MS to higher SFRs.

Using the empirical Kennicutt-Schmidt relation (Genzel et al. 2010) and fundamental SFR-Mass-Metallicity plane (Mannucci et al. 2010), we translate Σ_{SFR} to a gas, and then metal column. The IR/UV ratio inferred from the corresponding optical depth, under the assumption of an idealized homogeneous mixture of dust and stars, matches the observations well at low redshifts. At z ~ 2, galaxies are more UV transparent than our model predicts, suggesting patchier dust geometries (see also Adelberger & Steidel 2000; Daddi et al. 2007).

Conclusions
- We present evidence that a Hubble sequence is already in place at z ~ 2.
- Aside from some marked differences in the galaxy populations (e.g., size evolution and increasing zeropoint of the MS with redshift), the dependence of galaxy structure and mode of star formation on location in the SFR-Mass plane is strikingly similar at all epochs probed.

For further information, please contact: swuyts@mpe.mpg.de