
Figure 2 shows a more realistic example of the algorithm applied to a mock catalogue constructed
from a semi-analytic model applied to a large N-body simulation.

Figure 2: Left (upper): Comparison of the redshift distribution of the mock catalogue and that of
the resulting random catalogue after several iterations.Left (lower): The estimated overdensity
∆(z). Right: The corresponding estimated LF. In all cases the green linesare the first iteration
based simply onV max.

It can be seen that the method quickly iterates to a stable smooth solution which avoids biases due to
the large scale over- and under-densities that are present in the original mock dataset, which if ignored
(green curves) bias both the redshift distribution and the luminosity function.

To make the method applicable to deeper redshift surveys where one cannot ignore evolution one
can extend the likelihood analysis to include a parametric model of the evolution of the galaxy LF.
We have implemented and tested a model in which both the characteristic luminosity and number
density of the LF are allowed to evolve with redshift. Evolution of the galaxy number density with
redshift is degenerate with a systematic trend of the overdensity, ∆(z), with redshift. However, this
degeneracy can be broken by using prior information regarding the rms magnitude of the expected
density fluctuations. If the redshift bins are sufficiently large in volume we can make a simple estimate
of the expected fluctuations in the galaxy overdensity usingthe integralJ3 =

∫
ξ(r)r2dr (assumed to

be a constant when integrated to scales∼> 10h−1 Mpc) of the galaxy correlation function,ξ(r) (Peebles
1980). The resulting expected variance in∆ for redshift binp is

σ2
p =

1 + 4π ˆ̄npJ3

ˆ̄npVp
, (6)

with the second term enhancing the variance above the Poisson value because galaxy positions are
correlated and tend to come in clumps of4π ˆ̄nJ3 galaxies at a time.

The Likelihood analysis results in a coupled set of equations which constrain the evolution parameters
as well as the LF and∆(z). These equations can again be solved by a simple iterative scheme and we
provide code that implements this algorithm (http://astro.dur.ac.uk/˜cole/publications.html#Software).

As a final test we show, in Figure 3, the results of applying this procedure to a deep pencil beam
redshift survey. The data was constructed by sampling from aknown evolving Schechter function LF
and imposing known density fluctuations so that the accuracyof the reconstruction could be tested.

Figure 3: Left (upper): Comparison of the redshift distribution of a deep pencil beam mock catalogue
(black) and that of the resulting random catalogue after several iterations (red). Also shown is
the redshift distribution of a bright galaxy subset.Left (lower): The estimated overdensity∆(z)
(red) compared with the known input (blue).Right: The corresponding estimated LF (red)
compared with the known input LF (black). In all cases the green lines are the first iteration
based simply onV max and ignoring evolution.

Summary
We have presented a maximum likelihood method of generatinga random catalogue with a smooth
redshift distribution that corresponds to an observed flux limited galaxy catalogue. The approach is
superior to simply fitting a parametric model to the observedredshift distribution as it makes use
of additional information, namely the distribution of galaxy luminosities. The algorithm works by
cloning galaxies from the original catalogue and consequently produces a random catalogue in which
the random galaxies have all the attributes of the galaxies in the observed catalogue. This makes
the catalogue particularly well suited for use in estimating the dependence of galaxy clustering on
galaxy properties. This technique should be particularly applicable to multi-wavelength surveys such
as GAMA (Driver et al 2011) and its overlap with H-ATLAS (Eales et al 2010), 6dF (Jones et al 2009),
zCOSMOS (Lilly et al 2007) and future redshift surveys designed to probe galaxy evolution.
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The dependence of galaxy clustering on galaxy properties isplaying an increasingly strong role in
constraining the physics and modelling of galaxy formation. For instance, simple Halo Occupation
Distribution (HOD) modelling can reveal the typical massesof host dark matter haloes if one has a
good measurement of the spatial two-point correlation function of a galaxy population.

The traditional method of estimating a galaxy correlation function, ξ(r), is by counting pairs as a
function of separation,r, and comparing to an equivalent count for a random unclustered catalogue.
To determineξ(r) for galaxies with different, luminosities, colours, star formation rates or other prop-
erties one, ideally, needs a random galaxy catalogue in which the random galaxies carry all the same
properties (luminosity, colour, star formation rate) as those of the genuine catalogue. Here and in
astro-ph:1104.0009 we describe a procedure in which galaxies from an observational flux limited cat-
alogue can be cloned and randomly redistributed in redshiftto produce such a random catalogue. (The
angular position of each galaxy can be independently randomly chosen within the angular footprint of
the survey.)

A very simple approach would be to randomly distributeNclones of each galaxy within the volume,
Vmax, accessible to that galaxy. That is, to assign each clone a redshift distributed uniformly in the
cumulative volume,V (< z), between the minimum redshift limit of the survey and the maximum
redshiftzmax at which this galaxy would still satisfy the survey selection criteria.

As illustrated in Figure 1, this process is biased by any density perturbations in the original survey.
This occurs as in a flux limited survey the luminosities of objects are correlated with their redshifts.
Hence if there is an overdensity at a particular redshift then the catalogue will have an excess of
galaxies of a particular range of luminosities that, in turn, will bias the redshift distribution of the
random catalogue. To avoid this one must vary the number of clones produced according to the
inverse of the overdensity,∆(z), at their redshift. This requires an estimator of the overdensity in a
redshift shell,∆(z).

Figure 1: The black histogram shows the redshift distribution of a mock galaxy catalogue drawn
an analytic distribution (blue/cyan curve) derived from Schechter LF except for an imposed
overdensity in one redshift bin. The green curve shows the (biased) redshift distribution of a
random catalogue produced by cloning galaxies and randomlyplacing them within the accessible
V max volume. The red curve, which is practically coincident withthe blue/cyan, curve is the
redshift distribution of the random catalogue resulting from the new algorithm.

If one first ignores redshift evolution and makes the usual assumption that the LF is independent of the
large scale environment, then a simple maximum likelihood estimator of both the overdensity,∆(z),
and the luminosity function (LF),φ(L), can be obtained by maximising the likelihood

L = Παpα, where pα =
∆(zα)

dV (zα)
dz φ(Lα)∫

∆(z)dV
dz

∫ ∞
Lmin(z) φ(L) dL dz

(1)

is the joint probability of finding galaxy,α, at redshiftzα with luminosityLα.

The result is quite intuitive. The estimator of the LF is simply the standard “1/Vmax” estimate,

φ(L) =
∑
α

1

V dc,max(Lα)
, (2)

but with the normalV max replaced by adensity corrected

V
dc,max
α =

∑
p

∆pVp S(Lmin
p |Lα) ≡

∫ zmax

zmin

∆(z)
dV

dz
dz, (3)

which is simply the integral/sum of the accessible volume weighted by the overdensity in redshift
bins (S(Lmin

p |Lα) is a step function which is unity if the galaxy luminosityLα is brighter than the
luminosityLmin

p corresponding to the survey flux limit at redshift binp). The corresponding estimator
of the overdensity

∆p =
Np

Vp ˆ̄np
(4)

is simply the actual number of galaxies in the redshift bin divided by the number one would expect,
ˆ̄npVp, based on the LF. HereVp is the bin volume and

ˆ̄np =
∑

i

φ(Li) S(Lmin
p |Li) ≡

∫ zmax(Lα)

zmin

∆(z)
dV

dz
dz (5)

is the expected galaxy number density in redshift binzp computed by integrating/summing the LF
over luminosities sufficiently bright to be selected at thatredshift. The two estimators are coupled but
are easily solved by a simple iterative scheme starting with∆(z) = 1, such that the estimate from the
first iteration is the standard1/V max result.

The red (coincident with the blue) line in Figure 1 shows the result of estimating the overdensity,
∆(z), and then generating a random catalogue by cloning each galaxy with a rate proportional to
1/∆(z) and redistributing them uniformly within their accessiblevolume,V max. This removes the
bias and generates an random catalogue that is consistent with the known underlying distribution in
this test case. As each galaxy carries the properties of the original from which it was cloned the random
catalogue can be split by any of these observational properties. (For redshift dependent properties one
needs to have models, e.g. k-corrections, for their redshift dependence.)
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