

Biased galaxy formation and evolution in two frontier clusters at z=1.6?

Galaxy Formation 2011

Ken-ichi Tadaki¹, T. Kodama^{2,3}, M. Hayashi², Y. Koyama², K. Ota⁴, M. Tanaka⁵, C. Papovich⁶, M. Brodwin⁷, M. Iye¹

¹ University of Tokyo, ² NAOJ, ³ Subaru Telescope, ⁴ Kyoto University, ⁵ IPMU, ⁶ Texas A&M University, ⁷ Harvard-Smithsonian

Abstract

We present panoramic narrow-band surveys of [OII] emitters in two frontier high-z clusters at z ~ 1.6 (CIGJ0218-0510 and CI0332-2742) with Suprime-Cam on Subaru telescope. Both surveys cover about 800 arcmin² area each, and reached a 3-sigma limiting line flux of 2.0 x 10⁻¹⁷erg s⁻¹ cm⁻², corresponding to a dust-uncorrected star formation rate of 5 M yr⁻¹. In CIGJ0218-0510 (z=1.62), we identified more than 300 [OII] emitters on the basis of narrow-band excess and photometric redshifts. We also sampled quiescent galaxies on the color-color diagram. We find that the star forming activity in the cluster cores is very high, and that the ratio of the [OII] emitters to the quiescent galaxies increases towards higher density regions. This opposite trend at high-z to the one in the local Universe suggests that galaxy formation and evolution is biased and accelerated in high density regions at high redshift.

Kurk et al. 2009

Observation and Data

Instrument	Subaru / Suprime-Cam			
Filter	ZR	NB973		
Integration (min)	327	780		
Seeing	0.7"	١.0''		
Limiting (AB,5 <i>o</i> ,2")	25.4	25.5		

Subaru / Suprime-Cam **BVRiz** (Furusawa et al. 2008) UKIRT / WFCAM JHK (UKIDSS) XMM-Newton X-ray (Ueda et al. 2008)

Target selection

• [OII] emitter selection \rightarrow 364 [OII] emitters

(1) NB selection : we adopted the excess in the narrow-band of Σ >2.5 (Bunker et al. 1995). (2) phot-z selection : $1.52 < z_{phot} < 1.62$

1.5	· _ ·	1	1	•		
	• •	NB97	'3 emi			•••

photo-z code : "Hyperz" (Bolzonella et al. 2000)

Observation and Data

Instrument	Subaru / Suprime-Cam				
Filter	r'	z'	ZR	NB973	
Integration (min)	86	56	130	320	
Seeing	0.72"				
Limiting (AB,50,1.4")	27.43	25.72	25.33	25.39	

(1) 3σ NB excess (z_R-NB973) (2) $z_{spec}=1.60-1.62$ or $z_{phot}=1.43-2.15$ in GOODS-S r'z'z_R colors in outside field

In only GOODS-South region, we used GOODS-MUSYC catalog (Santini et al. 2009).

• quiescent galaxy selection \rightarrow 325 passive galaxies

[OII] emitter fraction

• : [OII] emitter • : quiescent galaxy

(1) We have revealed a gigantic structure surrounding the cluster traced mainly by [OII] emitters. The cluster appears to be embedded in a huge filament extending from North to East/South. (2) Many [OII] emitters are located within a projected radius of I Mpc

from the cluster center.

We calculated a local density (Σ 5th) of each galaxy and the fraction of [OII] emitter. Here we use the combined samples of the [OII] emitters and the quiescent galaxies.

Fraction=N[OII] emitter / (N[OII] emitter+Nquiescent)

Because the photometric redshift range of the quiescent galaxies that we adopted (Δz_{phot}) is larger than that of [OII] emitters (Δz_{NB}), we corrected for this effect by multiplying $\Delta z_{NB}/\Delta z_{phot}$.

In this field, average number density of our samples is 3.3 Mpc⁻².

In the highest density such as the cluster core and clumps, a large portion of galaxies are forming stars actively, and only a small fraction of galaxies may have evolved to a passive phase at z~1.6. Star formation activity is not suppressed in the dense environment. Rather it may be biased in the cluster core at this high redshift.