The BH Mass Scaling Relations of Active Galaxies: From the Local Universe out to a Lookback Time of 10 Gyrs

Vardha Nicola Bennert
University of California Santa Barbara

in collaboration with

Matthew W. Auger, Tommaso Treu, Chelsea E. Harris (UCSB)
Jong-Hak Woo (Seoul National University), Matthew A. Malkan (UCLA),
Alexander Le Bris (U. Paul Sabatier, France), Sarah Gallagher (UWO Canada),
Roger D. Blandford (Stanford)

Galaxy Formation, Durham

July 22nd 2011
What are the 18th and 20th most cited papers (since 2000)?
What are the 18th and 20th most cited papers (since 2000)?

Ferrarese & Merritt (2000)

Gebhardt et al. (2000)
Why are they among the most cited papers?
Why are they among the most cited papers?

Different scales:
 \(\mu\text{pc}\)-scale of accretion onto BH
 pc-scale of BH sphere of influence
 kpc-scale of bulge
Why are they among the most cited papers?

Different scales:
- μpc-scale of accretion onto BH
- pc-scale of BH sphere of influence
- kpc-scale of bulge

Formation & evolution of galaxies linked to BHs

Theoretical models:
- Mergers, AGN feedback (e.g. Volonteri et al. 2003; Ciotti & Ostriker 2007; Hopkins et al. 2007, 2009; Di Matteo et al. 2008)
What was first?

Look at evolution with redshift – back in time

Are galaxies & BHs constantly on tight correlations by feedback?
Are local relations end product of a more dramatic/stochastic process?
What was first?
What was first?
Approach

Understand relations: evolution

Study evolution: AGNs

Understand evolution: robust baseline
Approach

Understand relations: evolution

Study evolution: AGNs

Understand evolution: robust baseline

(1) $M(BH)$-L, $M(BH)$-σ to 4-6 Gyrs
 \cite{Bennert10ApJ}

(2) $M(BH)$-M^* to 10 Gyrs
 \cite{Bennert11ApJsubmitted}

(3) $M(BH)$-L, $M(BH)$-σ, $M(BH)$-M in local Universe
 \cite{Bennert11ApJ, Harris11ApJS}
M(BH)-L, M(BH)-sigma to 4-6 Gyrs

Seyfert-1 galaxies
SDSS DR7: broad Hβ

35 @ z~0.4
6 @ z~0.6

HST images:
Spheroid luminosity
AGN luminosity for M(BH)

Keck spectroscopy:
M(BH)
Sigma
M(BH)–L to 4-6 Gyrs

Including high-z sample (Peng et al. 2006)
0.66 < z < 4.5
27 gravitationally lensed AGNs
17 non-lensed AGNs
M(BH)–L to 4-6 Gyrs

With selection effects: \(M_{\text{BH}}/L_{\text{sph}} \propto (1 + z)^{1.4 \pm 0.2} \)

BH growth precedes bulge assembly

(see also e.g. Merloni et al. 2010, slope 0.7; Decarli et al. 2010, slope 1.5)

Evolution mass dependent?

(e.g. di Matteo et al. 2008; Hopkins et al. 2009)
Mergers (13/40)?

Gas-rich major merger with spiral:
- spheroid grows through disruption of spiral disk
- but no significant BH growth (e.g. Croton 2006)

Large scatter due to different types and time scales?

ACS (Treu et al. 2007)

NICMOS (Bennert et al. 2010)
Mergers (13/40)?

Comparable to fraction in GOODS at same z (Treu et al. 2007)
Cannot infer causal link between merger & AGN activity
(but: e.g. Canalizo & Stockton 2001, Urrutia et al. 2008, Bennert et al. 2008)

ACS (Treu et al. 2007)

NICMOS (Bennert et al. 2010)
Late-type galaxies (>15/40)?
Eventually fall on local relation (downsizing)?
More intrinsic scatter? (e.g. Gueltekin et al. 2009)
Pseudobulges? (e.g. Kormendy & Kennicutt 2004; Kormendy et al. 2011)

ACS (Treu et al. 2007)

NICMOS (Bennert et al. 2010)
The surprise: M(BH)-L(host)

No evolution (z<1)? *(see also Jahnke et al. 2009)*
The surprise: M(BH)-L(host)

No evolution (z<1)? (see also Jahnke et al. 2009)
(a) Growth of bulge through re-distribution of stars?
 Secular evolution or minor mergers?

![Graph showing M(BH)-L(host) relationship](image-url)
The surprise: $M(\text{BH})$-$L(\text{host})$

No evolution ($z<1$)? *(see also Jahnke et al. 2009)*

(a) Growth of bulge through re-distribution of stars?
 Secular evolution or minor mergers?
(b) More fundamental relation (late-type galaxies)?
 (e.g. Peng 2007, Jahnke & Maccio 2010; Poster 4.14 Laesker)
The surprise: $M(BH)$-L (host)

No evolution ($z<1$)?
(see also Jahnke et al. 2009)
(a) Growth of bulge through re-distribution of stars?
 Secular evolution or minor mergers?
(b) More fundamental relation (late-type galaxies)?
 (e.g. Peng 2007, Jahnke & Maccio 2010; Poster 4.14 Laesker)

What is dominant mechanism that grows spheroids?
Higher-mass objects, higher z: major mergers
Lower-mass objects, lower z: minor mergers
(Hopkins et al. 2009)
Uncertainties

Passive luminosity evolution?

![Graph showing the relationship between $M_{HI} (\log N_\odot)$ and $L_{V,0}$ (spheroid; L_\odot).]

- $z \sim 1.8$ (Peng+06)
- $z \sim 0.6$ (Bennert+09)
- $z \sim 0.4$ (Treu+07, Bennert+09)
- $z \sim 0.08$ (Bennert+09, Bentz+09)
M(BH)–M* to 10 Gyrs

AGNs in GOODS: 1<z<2
Lookback time: 8-10 Gyrs
Deep multi-color HST images
Evolutionary trend confirmed
M(BH)–M* to 10 Gyrs

4/11 clear spirals: bulge+disk
3 no bulge?
M(BH)–sigma to 4-6 Gyrs

Same sample *(Woo et al. 2011, in prep.)*

Advantage: no „passive luminosity evolution”

Distinguish different scenarios
(passive luminosity evolution, dissipational/dissipationless mergers)
A local baseline of the BH mass scaling relations

(i) Understand evolution = understand local relations
A local baseline of the BH mass scaling relations

(i) Understand evolution = understand local relations

(ii) True bulge dispersion

Wide range of morphologies (majority late-types):
Disk is kinematically cold but rotation
Questions "global" sigma measurements (high z & fiber-based SDSS)
A local baseline of the BH mass scaling relations

(i) Understand evolution = understand local relations

(ii) True bulge dispersion
Wide range of morphologies (majority late-types):
Disk is kinematically cold but rotation
Questions „global“ sigma measurements (high z & fiber-based SDSS)

(iii) Measure sigma from three different spectral ranges (e.g. Greene & Ho 2006)

CaHK region (~3735-4300 A) Mglb, Fe region (~5100-5300 A) Call triplet (~8500-8700 A)
A local baseline of the BH mass scaling relations

Selected from SDSS:
z=0.02-0.08; M(BH) > 10^7 M(sun)
Majority spirals (~65%)

Keck spectroscopy:
Spatially resolved along major axis
111 objects
M(BH)
sigma

SDSS images:
Spheroid luminosity
Spheroid mass
AGN luminosity for M(BH)
Spatially resolved sigma and velocity

Effect of disk present but negligible

Spectral regions interchangeable
M(BH)-L, M(BH)-sigma, M(BH)-M in local Universe

Inactive galaxies and active galaxies follow same relations
Approach

Understand relations: evolution

Study evolution: AGNs

Understand evolution: robust baseline

(1) M(BH)-L, M(BH)-sigma to 4-6 Gyrs

(2) M(BH)-M to 10 Gyrs

(3) M(BH)-L, M(BH)-sigma, M(BH)-M in local Universe
Approach

Summary

Understand relations: evolution

Study evolution: AGNs

Understand evolution: robust baseline

(1) M(BH)-L, M(BH)-sigma to 4-6 Gyrs

* BH growth precedes bulge assembly
* M(BH)-total L not evolving?

(2) M(BH)-M to 10 Gyrs

* Evolutionary trend confirmed

(3) M(BH)-L, M(BH)-sigma, M(BH)-M in local Universe

* Active = inactive galaxies
* Effect of disk/spectral region negligible

The BH Mass Scaling Relations of Active Galaxies: From the Local Universe out to a Lookback Time of 10 Gyrs

Dr. Vardha Nicola Bennert
University of California Santa Barbara

And from Sep 1st 2011 on?
Teaching teaching teaching teaching teaching:
Teaching research teaching teaching teaching

Prof. Vardha Nicola Bennert

California Polytechnic State University
San Luis Obispo