Structure, dynamics and stellar populations in early-type galaxies

Matthew Colless Australian Astronomical Observatory

Galaxy Formation, Durham, 20 July 2011

Australian Government Department of Innovation Industry, Science and Research

Motivation and outline

- The Fundamental Plane (FP) relates the dynamical and structural properties of early-type (i.e. bulge-dominated) galaxies
- Stellar population variations can cause scatter about the FP, obscuring these relations and limiting the use of the FP as a distance estimator
- Conversely, trends in the FP with stellar population can reveal clues linking the *structural* & *stellar* assembly histories of early-type galaxies
- We explore these issues with the 6dF Galaxy Survey, which measures FP and stellar population parameters for large NIR-selected samples
- We determine the variations in stellar populations in FP space, and examine: (i) the implications for the merger histories of galaxies;
 (ii) whether SP trends drive FP variations with galaxy morphology & cluster richness; & (iii) prospects for improving FP distance estimates

The 6dF Galaxy Survey – a brief introduction

- NIR-selected using 2MASS down to K = 12.65
- z-survey: 137000 spectra and 125000 redshifts
- v-survey: 10000 FP peculiar velocities; also ages, metallicities and [α /Fe] for 7000 galaxies
- 17000 deg² ($\delta < 0^{\circ}$, $|b| > 10^{\circ}$) to $\langle cz \rangle \approx 16500$ km/s
- Fibre aperture = $6.7 \operatorname{arcsec} \approx 7 \operatorname{kpc} \operatorname{at} \langle \operatorname{cz} \rangle$

Beutler et al., 6dFGS: Baryon Acoustic Oscillations & the Local Hubble Constant, astro-ph/1106.3366

The 6dFGS View of the Local Universe

The 6dF Galaxy Survey: The Fundamental Plane of Early-Type Galaxies

[in prep.]

Stellar Population Trends Across and Through the 6dFGS Fundamental Plane

Christopher M. Springob¹, Christina Magoulas², Rob Proctor³, Matthew Colless¹, D. Heath Jones^{1,4}, Chiaki Kobayashi⁵, Lachlan Campbell^{5,6}, John Lucey⁷, & Jeremy R. Mould^{2,8} -0.70-0.70¹Australian Astronomical Observatory -0.75-0.751.8 ²University of Melbourne -0.80-0.801.7 ³University of Sao Paulo 0.85 مر 0.85 م a 1.6 ⁴Monash University -0.90-0.901.5 ⁵Australian National University ⁶University of Western Kentucky -0.95-0.951.4 ⁷University of Durham -1.00-1.001.3 1.4 1.5 1.6 1.7 1.8 0.32 0.36 0.40 0.44 ⁸Swinburne University of Technology 0.32 0.36 0.40 0.44

The 6dF Galaxy Survey: The Fundamental Plane of Early-Type Galaxies

[in prep.]

Christina Magoulas¹, Christopher M. Springob², Matthew Colless², D. Heath Jones^{2,3}, Lachlan Campbell⁴, John Lucey⁵

¹University of Melbourne ²Australian Astronomical Observatory ³Monash University ⁴University of Western Kentucky ⁵University of Durham

Fit the Fundamental Plane as 3D Gaussian distribution using maximum likelihood.

Study variations in the NIR Fundamental Plane with wavelength, morphology and group/cluster richness.

Principal axes of the 3D Gaussian Fundamental Plane with respect to the observed parameters

$$r \equiv \log R_e, s \equiv \log \sigma, i \equiv \log \langle I \rangle_e$$

 $-v_{1} \text{ is } \sim \text{mass-to-light ratio:}$ $\log(M/L) = (r+2s) - (i+2r)$ = -r+2s-i $cf. \quad -v1 = 1.13r - 1.72s - 1$ $-v_{2} \text{ is } \sim \text{luminosity density:}$ $\log(L/R^{3}) = (i+2r) - (3r)$ = i-r $cf. \quad -v2 = i - 0.89r$ $-v_{3} \text{ is not special physically}$

A 3D Gaussian distribution is found, empirically, to be an excellent fit to the observed *bright end* ($\sigma > 100$ km/s) of the NIR Fundamental Plane

ML method recovers mock FP accurately and precisely

The J-band Fundamental Plane for 8901 early-type galaxies

Stellar Population Trends Across and Through the 6dFGS Fundamental Plane

[submitted]

Christopher M. Springob¹, Christina Magoulas², Rob Proctor³, Matthew Colless¹, D. Heath Jones^{1,4}, Chiaki Kobayashi⁵, Lachlan Campbell^{5,6}, John Lucey⁷,

- ²University of Melbourne
- ³University of Sao Paulo
- ⁴Monash University
- ⁵Australian National University
- ⁶University of Western Kentucky
- ⁷ University of Durham
- ⁸Swinburne University of Technology

[1] Stellar population parameters (age, metallicity, $[\alpha/Fe]$) for 7143 galaxies with FP parameters [3] SP parameters vary with v₁ (*through* FP) and v₃ (*across* FP), but <u>not</u> with v₂ (*along* FP ~ L/R_e³)

[2] Derive directional derivatives of SP parameters in FP space; find variations with all of σ , R_e, I_e & δ_{FP} [4] Relate this result to merger histories: lower luminosity densities ⇒ more mergers

[5] Can (some of) these trends be used to reduce the scatter in the FP?

Age-metallicity distribution for 7143 early-type galaxies

Pair-wise correlations between stellar population parameters and Fundamental Plane parameters

Correlations (in red) are consistent with well-known trends:

- All SP's show clear trends with log σ
- Metallicity shows trends with log R_e
- There are weak or no trends with log I_e

Age trend in the Fundamental Plane

The variation in age is mainly *through* the FP (i.e. in v_1 direction)

[Z/H] trend in the Fundamental Plane

Variation in metallicity is mainly *across* the FP (i.e. in v_3 direction)

[α/Fe] trend in the Fundamental Plane

Variation of $[\alpha/Fe]$ runs both *through* and *across* the FP (i.e. in a combination of the v₁ and v₃ directions)

Directional derivatives of stellar population parameters w.r.t. the FP principal axes, the FP observables, and M, L and M/L

Stellar population parameter										
	•••••	Age	••••	Met	allicity	•••••	Over-abundance			
FP parameter	$ abla_{\hat{\mathcal{F}}}A \epsilon \chi$		$ abla_{\hat{\mathcal{F}}}[Z/H]$	ϵ χ		$\nabla_{\hat{\mathcal{F}}}[\alpha/Fe]$	ε	χ		
v_1	-1.47	0.12	12.25	0.07	0.13	0.54	-0.24	0.05	4.80	
v_2	-0.04	0.04	1.00	0.05	0.03	1.67	-0.01	0.01	1.00	
v_3	0.08	0.09	0.89	0.46	0.04	11.50	0.16	0.02	8.00	
т	-0.70	0.08	8.75	0.32	0.07	4.57	-0.03	0.03	1.00	
8	1.16	0.11	10.55	0.25	0.10	2.50	0.29	0.04	7.25	
i	-0.57	0.08	7.13	0.22	0.06	3.67	-0.02	0.03	0.67	
m	0.32	0.05	6.92	0.16	0.04	3.87	0.11	0.02	6.44	
l	-0.39	0.04	11.01	0.17	0.03	5.65	-0.02	0.01	1.19	
m-l	0.60	0.04	14.51	-0.01	0.04	0.18	0.11	0.02	6.96	

Significant trends (in **bold**) have $\chi > 5$ (i.e are significant at >5-sigma): e.g. age with v_1 , metallicity with v_3 and over-abundance with both v_1 and v_3 . Can use the 3D directional derivatives to predict the 2D pair-wise correlations between the stellar population parameters and the FP parameters.

2D correlations between stellar population parameters and Fundamental Plane parameters

Predicted correlations based on directional partial derivatives (blue) are generally consistent with – but not identical to – the observed correlations (red)

The 2D correlations are projections of more complex 3D correlations

Directional derivatives of stellar population parameters w.r.t. the FP principal axes, the FP observables, and M, L and M/L

	Stellar population parameter											
	••••	Age	•••••	Meta	allicity.	•••••	Over-abundance					
FP parameter	$ abla_{\hat{\mathcal{F}}}A \epsilon \chi$		$ abla_{\hat{\mathcal{F}}}[Z/H]$	ε	χ	$\bigtriangledown_{\hat{\mathcal{F}}}[\alpha/Fe]$	ε	χ				
v_1	-1.47	0.12	12.25	0.07	0.13	0.54	-0.24	0.05	4.80			
v_2	-0.04	0.04	1.00	0.05	0.03	1.67	-0.01	0.01	1.00			
v_3	0.08	0.09	0.89	0.46	0.04	11.50	0.16	0.02	8.00			
T	-0.70	0.08	8.75	0.32	0.07	4.57	-0.03	0.03	1.00			
8	1.16	0.11	10.55	0.25	0.10	2.50	0.29	0.04	7.25			
i	-0.57	0.08	7.13	0.22	0.06	3.67	-0.02	0.03	0.67			
m	0.32	0.05	6.92	0.16	0.04	3.87	0.11	0.02	6.44			
l	-0.39	0.04	11.01	0.17	0.03	5.65	-0.02	0.01	1.19			
m-l	0.60	0.04	14.51	-0.01	0.04	0.18	0.11	0.02	6.96			

No stellar population parameter has any significant trend with v_2 , the long axis of the FP – i.e. no variation in stellar population with luminosity density.

FP relation for galaxies in Kobayashi (2004) simulation of galaxy merger histories

There is a trend in merger history *along* the FP, but no trend between merger history & scatter *off* the FP.

$v_2 vs \log \sigma$ for elliptical galaxies in Kobayashi (2004) simulation

There is a clear trend of merger history with v_2 (luminosity density), but there is no readily apparent trend with σ .

Fundamental Plane differences with age of stellar population

There is a clear trend in the r-offset of the FP with age; additionally, galaxies with ages <3Gyr have larger rms scatter in distance than older galaxies. So, in principle, we can reduce the scatter in the overall FP either by *selection* on age or by *compensating* for the variation with age of the FP.

Subsample	$N_{\rm gals}$	а	b	c	\bar{r}	\overline{s}	ī	r ₀	σ_1	σ_2	σ_3	σ_r
Full Sample	8901	1.524±0.026	-0.885±0.008	-0.329±0.054	0.183±0.004	2.188±0.004	3.188±0.004	0.345±0.002	0.0519±0.0009	0.3177±0.0038	0.1699±0.0030	0.127 (29.7%)
${\mathcal S}$ Unknown	2222	1.529±0.050	-0.840±0.016	-0.495±0.110	$0.213 {\pm} 0.008$	2. 194±0.006	$3.154{\pm}0.008$	$0.338 {\pm} 0.004$	$0.0534{\pm}0.0017$	0.3161 ± 0.0073	$0.1638 {\pm} 0.0051$	0.134 (31.5%)
$\begin{array}{l} \operatorname{Age} \leqslant 3 \ \operatorname{Gyr} \\ 3 < \operatorname{Age} \leqslant 8 \ \operatorname{Gyr} \\ \operatorname{Age} > 8 \ \operatorname{Gyr} \end{array}$	1419 3181 2079	1.651±0.087 1.472±0.036 1.599±0.043	-0.828±0.022 -0.889±0.013 -0.927±0.015	-0.729±0.185 -0.195±0.074 -0.401±0.089	0.189±0.012 0.183±0.008 0.151±0.008	2.145±0.010 2.186±0.006 2.213±0.006	3.171±0.010 3.195±0.007 3.223±0.008	0.421±0.008 0.348±0.003 0.311±0.003	0.0558±0.0022 0.0485±0.0014 0.0434±0.0018	0.3223±0.0101 0.3085±0.0065 0.3233±0.0076	0.1648±0.0074 0.1735±0.0050 0.1684±0.0054	0.135 (31.5%) 0.116 (27.1%) 0.117 (27.2%)

Fundamental Plane differences with metallicity of stellar population

There is a weaker trend in FP r-offset with metallicity; so in principle could further reduce overall FP scatter by compensating for the effects of [Z/H].

Subsample	$\mathrm{N}_{\mathrm{gals}}$	а	b	с	\overline{r}	\overline{s}	ī	IO	σ_1	σ_2	σ_3	σ_r
Full Sample	8901	1.524±0.026	-0.885±0.008	-0.329±0.054	0.183±0.004	2.188±0.004	3.188±0.004	0.345±0.002	0.0519±0.0009	0.3177±0.0038	0.1699±0.0030	0.127 (29.7%)
${\mathcal S}$ Unknown	2222	1.529±0.050	-0.840±0.016	-0.495±0.110	$0.213 {\pm} 0.008$	2.194±0.006	3.154±0.008	0.338±0.004	0.0534±0.0017	0.3161±0.0073	0.1638±0.0051	0.134 (31.5%)
$\begin{array}{l} Age \leqslant 3 \ Gyr \\ 3 < Age \leqslant 8 \ Gyr \\ Age > 8 \ Gyr \end{array}$	1419 3181 2079	1.651±0.087 1.472±0.036 1.599±0.043	-0.828±0.022 -0.889±0.013 -0.927±0.015	-0.729±0.185 -0.195±0.074 -0.401±0.089	0.189±0.012 0.183±0.008 0.151±0.008	2.145±0.010 2.186±0.006 2.213±0.006	3.171±0.010 3.195±0.007 3.223±0.008	0.421±0.008 0.348±0.003 0.311±0.003	0.0558±0.0022 0.0485±0.0014 0.0434±0.0018	0.3223±0.0101 0.3085±0.0065 0.3233±0.0076	0.1648±0.0074 0.1735±0.0050 0.1684±0.0054	0.135 (31.5%) 0.116 (27.1%) 0.117 (27.2%)
$\begin{array}{l} [Z/H] \leqslant 0.05 \\ 0.05 < [Z/H] \leqslant 0.2 \\ [Z/H] > 0.2 \end{array}$	2231 2144 2304	1.632±0.065 1.548±0.056 1.403±0.044	-0.872±0.017 -0.908±0.015 -0.907±0.014	-0.599±0.130 -0.303±0.118 0.009±0.094	0.100±0.010 0.195±0.009 0.268±0.007	2.130±0.008 2.205±0.005 2.261±0.004	3.189±0.009 3.212±0.008 3.210±0.006	0.368±0.006 0.354±0.004 0.333±0.003	0.0546±0.0021 0.0514±0.0018 0.0447±0.0013	0.3147±0.0071 0.3176±0.0071 0.3111±0.0064	0.1646±0.0058 0.1472±0.0049 0.1443±0.0037	0.134 (31.4%) 0.125 (29.3%) 0.111 (25.8%)

Variation of FP parameters with group richness & morphology

Simulations show that these significant FP r-offsets are *not* explained by the stellar population differences between clusters & field (or E/S0's & early-type spiral bulges).

Summary and conclusions

[1] Successfully fit distribution of ~10⁴ 6dFGS galaxies in Fundamental Plane space as a 3D Gaussian distribution using maximum likelihood

[2] For ~7000 of these galaxies, stellar population parameters (age, metallicity, [α /Fe]) are measured from Lick absorption line indices

[3] The 3D directional derivatives of the stellar population parameters in Fundamental Plane space show variations with *all* of σ , R_e, I_e and δ_{FP}

[4] We recover the pair-wise 2D relations between stellar population & FP variables from these 3D trends, with some unexpected dependencies

[5] Stellar population parameters vary with v_1 (*through* FP) and v_3 (*across* FP), but <u>not</u> v_2 (*along* FP ~ luminosity density); suggests that the extent of the FP in v_2 is driven by merger histories not stellar populations

[6] These SP trends can in principle be used to reduce the scatter in the FP