Stellar Haloes in CDM

Galaxy Formation 2011 Andrew Cooper MPA / Durham / Virgo Consortium

Stellar Haloes

Stellar Haloes

MVV Satellites

Sagittarius

Fornax

1938

LMC

SMC

Draco

Ursa Minor

1954

1954

Sculptor

Sextans

1990

Leo I 1950

Leo II

Not to scale. Thanks to whoever took these pictures! (AAO, ESO)

Tidal Disruption

- LF today only a proportion of all satellites that fell into the halo.
- ~30-50% of all companion galaxies have been destroyed (larger fraction at the bright end)

Particle Tagging Model

Tag DM particles in high-resolution N-body simulations of MW-like systems

(c.f. White & Springel 2000, Bullock, Kravtsov & Weinberg 2001, Bullock & Johnston 2005, De Lucia & Helmi 2008, AC et al. 2010)

- Mass and morphology of the accreted stellar halo
- Gradients of density, metallicity, age
- Number and nature of individual satellites that contribute halo stars
- Nature of the stellar halo:
 - In-situ components and thick discs

Credit: John Helly (ICC Durham)

V-band surface brightness, 150x150 kpc

.

 \bigcirc

Tuesday, July 19, 2011

Π

24.0

25.5

27.0

28.5

30.0

 $mag/arcsec^2$

Aq-F-2

z = 3.90

Density Profiles

Deason et al. 2011 (BHBs, arbitrary normalization!)

Density profiles: broken powerlaws, slope consistent with MW (density slightly lower than solar neighbourhood)

Density Profiles

Metallicity

Density $(x r^2)$

Infall redshift

Fraction younger than {age}

Enrichment of halo (Z) comparable to bright satellites Age comparable to faint satellites

Flat Haloes

All sky projection, galactic coordinates, R = 8 kpc

Distance to halo stars

Flat Haloes

All sky projection, galactic coordinates, R = 8 kpc

Lumps in the Halo

4d correlation functions of SDSS BHB stars and mocks from model stellar haloes (AC et al. 2011, MNRAS: also Xue et al. 2011)

Too much structure Some models in the models

agree

Most models agree

Lumps in the Halo

4d correlation functions of SDSS BHB stars and mocks from model stellar haloes

Massive galaxies and groups

Massive galaxies and groups

Massive galaxies and groups

Summary

- Differences in the accretion histories of galaxies are reflected in their stellar haloes. CDM galaxy formation models make explict predictions.
- MW-like haloes are dominated by stars from 1-5 massive progenitors. Halo to halo variations are substantial: models seem consistent with the MW and M31 but larger observational samples required.
- Global metallicity gradients are flat. On average halo stars are older than surviving satellites but just as metal-rich.
- The correlated infall directions of satellites flattents the accrted stellar halo, and may confine most halo stars to low heights above the galactic plane.
- The MW halo is smoother than accretion-only simulations for galactocentric distances less than 30 kpc, suggesting an in situ contribution of at least 10-20%.