Insight into the hot side of galaxy formation

Why you should care about hot gas around L* galaxies

Rob Crain (Swinburne/Leiden)

w/ McCarthy, Schaye, Frenk, Theuns

All (semi-)analytic models appeal to circumgalactic gas reservoirs to fuel star formation

All (semi-)analytic models appeal to circumgalactic gas reservoirs to fuel star formation

 $\label{eq:t_cool} \begin{aligned} & \text{If } \textbf{t}_{cool} < \textbf{t}_{dyn} \\ & \text{infalls directly (rapid regime/cold flow)} \\ & \text{If } \textbf{t}_{cool} > \textbf{t}_{dyn} \\ & \text{hot hydrostatic corona} \end{aligned}$

For L* galaxies WF91 predicts: $kT\sim0.1$ keV (soft X-ray) $L_x = 10^{41}-10^{43}$ erg/s !!!

ROSAT failed to detect any hot reservoirs. The few tens of X-ray detections from **Chandra/XMM** have mixed interpretations.

The absence/faintness of X-ray detections of hot coronal gas associated with nearby spirals potentially signals a fundamental flaw in galaxy formation theory.

I hope to convince you that with better modelling and some simple calculations:

i) this perceived conflict is soluble
ii) the interpretation of X-ray observations of
L* spirals and ellipticals can be unified.

X-ray coronae in simulations of disc galaxy formation Robust A. Code, tan G. McCardy, Castas S. Frenk, Tem Piecus & Prop Schage

Please see the movie at the URL:

http://pulsar.swin.edu.au/~rcrain/GIMIC_XRAY/Movies/Density_and_APEC_h264.mov

GIMIC traces ~500 galaxies like this at once.

Each galaxy is resolved with 100,000 particles.

...see Crain et al. (2009, 2010)

X-ray emission from spirals: is it just outflows?

Fraction of hot gas mass in outflows

Fraction of L_x in outflows

Little X-ray gas (by mass) is in outflows. Mass dominated by hydrostatic corona. Outflows contribute disproportionately to L_X , but generally sub-dominant.

Outflows are disproportionately luminous, but the corona dominates

This system is dominated by static/inflowing gas **K-band flux contours** 0.5-2.0 keV

arcmin⁻²] cm⁻² ۰ ۲ log₁₀ Σ_{x,0.5-2.0 kev} [erg

-17

X-ray emission from spirals: is it just outflows?

Systems like M82 are not common (also in GIMIC) Nor are they ideal tests of this paradigm...

> Credit: X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ESA/STScI/AURA/ The Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht

Systems like M82 are not common (also in GIMIC)

Nor are they ideal ter his paradigm...

dit: X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ESA/STScI/AURA/ ne Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht

X-ray luminosity vs. K-band luminosity

Data and simulation are in remarkable agreement.

This is an **ab initio** gasdynamical simulation with no ad-hoc tuning!

Quoted *L*_X is from **diffuse gas** only: point sources removed by spatial excision and spectral subtraction

Crain et al. (2010)

X-ray luminosity vs. disc rotation velocity

Data and simulation similarly agree.

More *fundamental* test: v_{rot} is a better proxy for halo mass.

Crain et al. (2010)

Why is GIMIC so different to WF91?

50% of baryons are **ejected** from Milky Way mass haloes in GIMIC.

*f*_{star} broadly consistent with Guo-White test (c.f. Lucio Mayer's talk yesterday)

Ejection is preferentially central, because feedback impacts on low entropy gas.

Emission varies as n^2 , so x10 in density is x100 in X-ray luminosity.

I hope to convince you that with better modelling and some simple calculations:

i) this perceived conflict is soluble

ii) the interpretation of X-ray observations ofL* spirals and ellipticals can be unified.

L_X - L_K data for spirals and ellipticals

Relationships have statistically similar normalisation (slopes differ marginally).

This is **at odds** with the notion of an internal origin for the X-ray luminous gas e.g. SNe-II in spirals, SNe-Ia/AGB in ellipticals: energetics are **incompatible**.

We can make a more fundamental check, where S/N allows...

Crain et al. arXiv:1011.1906

L_X - T_X data for spirals and ellipticals

Group/cluster data from Helsdon & Ponman 00; Mulchaey+ 03, Horner 01.

 T_X probes potential in same place we probe L_X .

These normalisations are also **remarkably similar**.

Continuous L_x - T_x relation over 7 dex in L_x !

Break at 1keV (c.f Dave et al 2002; Dai et al 2010) indicative of **transition** from baryonically open to baryonically closed haloes.

Infer a common origin of hot gas in discs and ellipticals: **accretion** during galaxy assembly.

The accretion picture is consistent with Z_X

X-ray luminosity weighted

Mass weighted

The luminosity-weighting of X-ray measurements **biases** the perceived metallicity of coronal gas.

Systems that appear to have solar metallicity are typically < 0.1 solar. Entirely **compatible** with accretion.

RAC in prep

Summary

Hot galactic coronae are a key prediction of galaxy formation theory

Gasdynamical simulations now **reproduce** the (limited) X-ray samples (Semi-)analytic models overpredict X-ray luminosities by 1-2dex: gas fraction of haloes suppressed by entropy injection at z~1-3 gas is less concentrated than dark matter

X-ray emission typically dominated by a quasi-static corona

Simulations produce M82 analogues, but they are **rare** Outflowing gas is **disproportionally** X-ray luminous

Hot haloes of L* discs and ellipticals follow same scalings

New observational result that is **incompatible** with standard interpretation Indicates common origin: most plausibly **accretion** from the IGM.