AMAZE with LSD: Metallicity evolution in the early Universe

Giovanni Cresci
INAF – Arcetri

F. Mannucci, Sir R. Maiolino, A. Marconi, V. Sommariva, A. Gnerucci, L. Magnini and the LSD/AMAZE team

Galaxy Formation
Durham, 21/07/2011
Metallicity: a fundamental parameter

- Indirectly traces the integrated galaxy SFH, not only the current SFR
- Relative element abundances reflect the cycling of gas through stars, and any exchange of gas between galaxy and its environment (infall/outflows)

Understanding its evolution is essential to isolate the physical mechanisms that drive Star Formation
The mass-metallicity relation

Possible Drivers:
- star formation history and mass lost
- downsizing
- inflows and merging
- outflows and feedback (AGN, SNe)
- evolution in IMF
- …

Crucial test for models!
Especially at high-z, where the predictions of different models diverge more

AMAZE... ...with LSD

1. Near-IR Integral Field Spectroscopy with SINFONI@VLT

AMAZE (Assessing the Mass-Abundance redshift(Z) Evolution):
- seeing limited, a sample of 30 LBGs at 3<z<5

LSD (Lyman-break galaxies Stellar populations and Dynamics):
- diffraction limited with AO, an unbiased sample of 10 LBGs at 3<z<4
- 70h (PI: Mannucci) Mannucci et al. 2009, Gnerucci et al. 2010, Sommariva et al. 11

2. Near-IR Multi Object Spectroscopy with LUCIFER@LBT
- 4 Steidel fields, ~10 z=3 LBGs/field
- 40h (PI: Cresci) observations ongoing...
Measuring metallicities

Gas phase metallicity from strong lines

Nagao et al. 06: improved calibrations with low metallicity samples
Evolution of the mass-metallicity relation

M-Z relation already in place at z\~3.5

Strong and fast evolution of the M-Z relation beyond z\~2?

(BUT: it is not tracing the evolution of individual galaxies)
Inflows and Outflows

In a “closed box model” with instantaneous recycling, instantaneous mixing, and low metallicities:

\[Z = y_{\text{true}} \cdot \ln(1/f_{\text{gas}}) \]

\(y_{\text{true}} = \text{stellar yield}, \) i.e., the ratio between the amount of metals produced and returned to the ISM and the mass of stars.

The measured values of \(y_{\text{eff}} = Z/\ln(1/f_{\text{gas}}) \) could differ from the true stellar yields \(y \) if some of the assumptions do not hold, in particular if the system is not a closed box.

Inflows and outflows
Metallicity Gradients

Interplay between in- and out-flows, redistribution of mass within galaxies, radially dependent SFH, mixing due to a stellar bar, clump migration, etc

Negative radial metallicity gradient in local spiral galaxies: the central disk region is more metal-enriched than the outer regions. (but see also Werk et al. 2010)

At higher redshift, steeper gradients measured in two gravitationally lensed galaxies at z~1.5 and z~2 with near-IR IFU spectra, supporting “inside-out formation” (see T. Jones poster)

But more complex situation in larger samples: even positive “inverted” gradients at z~1.5 in MASSIV galaxies

Contini et al. 2011
Thanks to the AMAZE/LSD data

First metallicity maps at z~3:
- Three undisturbed disks
- Well defined regions close to the SF peak are less metal enriched than the disk

Metallicity Gradients

Direct evidence for massive infall of metal poor gas feeding the star formation

Cresci et al. 2010, Nature
Is there a relation between metallicity, mass and SFR?

- **Stellar Mass**: SED fitting + spectra
- **SFR**: Hα (Kennicutt) + Balmer dec.
- **Gas metallicity**: strong lines: \([\text{NII}] / \text{H}\alpha\) and R23

141,000 local SDSS galaxies, selected to have SNR(Hα)>25, z>0.07
The Fundamental Metallicity Relation

Small scatter => Long lasting equilibrium between gas accretion, star formation and metal ejection (e.g. Dave', Finlator & Oppenheimer 2011)

Dispersion of the original Mass-Met:
- half systematic (SFR)
- half intrinsic: ~12%

Mannucci, Cresci et al. 2010
Going to higher z with zCOSMOS

From a parent sample of 7700 zCOSMOS DR2 star forming galaxies with VIMOS spectroscopy, with:

- $S/N(H\#) > 15$ for $z < 0.45$
- $S/N(H\$) > 10$ for $z > 0.49$
- $S/N > 2$ for all other lines

Using $[\text{NII}] / H\#$ 131 galaxies
Using R_{23} 171 galaxies

M-Z relation is evolving at $z \approx 0.62$

... but no evolution of the FMR

Cresci et al. 2011
Is the mass-metallicity really evolving?

Adding distant Galaxies at: $z=0.8$ (Savaglio et al. 2009, Ledoux et al. 2008, Savaglio et al. 2009). Increasing the SFR with z, at least up to $z=3.3$ (Maiolino et al. 2008, Mannucci et al. 2009).

See also C. Maier’s poster.
Still not convinced?

The presence of a FMR up to $z \sim 2.5$ confirmed by several other *independent* observations of *differently selected* galaxy samples at low and high z.

Long GRB host galaxies (Mannucci et al. 2011, Vergani et al. 2011)

Stacked Ly α emitters at $z=2.2$ (Nakajina et al. 2011)
Erb et al. (2010) Q2343-BX418 z=2.3
Deep spectrum: 12h Keck time

Observed $12+\log(O/H)=7.90\pm0.2$
SFR $= 15 \pm 2 \, M_\odot/yr$
Some more?

Richard et al. 2010: Gravitationally Lensed galaxies at $z \sim 2.5$

Sampling lower SFRs

See also Contini et al. 2011 at $z \sim 1.5$, Kassin et al. 2011 at $z \sim 0.8$, Yates et al. and J. Scudder’s poster at $z \sim 0$.
Summary

➡️ Metal Content in Galaxies

Fundamental to understand the main drivers of galaxy evolution, especially meaningful when considered in concert with stellar and gas content.

➡️ Chemical evolution in high-z star-forming galaxy:

Evidence for rapid metal enrichment and significant inflows/outflows at high-z;

Resolved metallicity gradients provide evidence of pristine gas accretion in star forming disks at high redshift;

First measure of stellar metallicity in high-z star forming galaxies

➡️ Fundamental Metallicity Relation:

Local galaxies define a tight surface in this 3D space SFR-Met-M$_*$, which appear not to evolve up to z~2.5;

It has to be explained by the interplay of infall of pristine gas, outflow of enriched material and star formation history (see e.g. Dave’, Finlator & Oppenheimer 2011).