Unraveling the properties of active galaxies in hierarchical cosmologies

Outline

- Galaxy formation (*GalForm*): the semi-analytic approach
- Galaxy evolution and black hole growth
- Modelling active nuclei
- Predictions-results

Galaxy Formation, July 21
Nikos Fanidakis,
and Carlos Frenk, Carlton Baugh, Shaun Cole, Richard Bower,
Chris Done, Ryan Hickox, Andrew Benson, Claudia Lagos
Galaxy formation (GalForm): the semi-analytic approach

- Dark matter with gas simulations:
 - High resolution is important
 - Need for correct subgrid physics
 - Usually limited dynamical range
 Talks from Schaye, Mayer, McCarthy

- Semi-analytical approach:
 - Fast and flexible
 - Ideal for studying statistical properties, creating mock catalogues and lightcones
 Talks from White, Lagos, Lacey

GalForm

1. Dark matter haloes
Merger trees from Millennium simulation (Springel et al. 2005)

2. Galaxy formation
Analytical/numerical models for:
 ✓ Gas cooling
 ✓ Star formation (Lagos et al. 2011)
 ✓ SN feedback
 ✓ Chemical evolution
 ✓ Galaxy mergers
 ✓ Galaxy sizes
 ✓ SMBHs, AGN feedback
 Bower et al. (2006)
The growth of BHs in GALFORM

BH mass

Accretion

BH-BH mergers

Accretion only during burst star formation (SF)

SF as in Blitz & Rosolowsky (2006) (Lagos et al. 2010)

BH-BH mergers only redistribute the BH mass

Disk instabilities

Gas cooling

\[\tau_{cool} = \frac{3 p_{gas}(r)}{2 \mu m_H n_e^2(r) \Lambda(T_{gas}, Z_{gas})} \frac{k_B T_{gas}}{\epsilon_{\text{cool}}} \]

Stability criterion

\[\frac{V_{\text{max}}}{(GM_{\text{disk}} / r_{\text{disk}})^{1/2}} < 1 \]

Efstathiou et al. (1982)

BH growth

\[M_{\text{acc}}^\text{BH} = f_{\text{BH}} M_{\text{burst}}^\text{BH} \]

Malbon et al. (2007)

Introduction ★ GALFORM ★ The AGN model ★ Results ★ Summary-Conclusions
The growth of BHs in **GALFORM**

- **Introduction**
 - **GALFORM**
 - The AGN model
 - Results
 - Summary-Conclusions

Disk instabilities
- BH mass
 - Accretion
 - Starburst mode
 - Hot-halo mode
 - BH-BH mergers
 - Disk instabilities
 - Galaxy mergers

Galaxy mergers
- BH-BH mergers only redistribute the BH mass
- SF as in Blitz & Rosolowsky (2006) (Lagos et al. 2010)
- Accretion only during burst star formation (SF)

Quasar
- Hot gas
- Cold gas
- Dark matter
The growth of BHs in GALFORM

- BH mass
 - Accretion
 - Starburst mode
 - Disk instabilities
 - Galaxy mergers
 - Hot-halo mode
 - BH-BH mergers
 - BH-BH mergers only redistribute the BH mass

Accretion only during burst star formation (SF)

SF as in Blitz & Rosolowsky (2006) (Lagos et al. 2010)

Introduction ★ GALFORM ★ The AGN model ★ Results ★ Summary-Conclusions
The growth of BHs in GALFORM

- Bower et al. (2006)
- Malbon et al. (2007)

- Accretion only during burst star formation (SF)

- SF as in Blitz & Rosolowsky (2006) (Lagos et al. 2010)

- BH-BH mergers only redistribute the BH mass

- Disk instabilities
- Galaxy mergers

Accretion

- Starburst mode
- Hot-halo mode

BH-BH mergers

- Updated Bower et al.
The growth of BHs in GALFORM

- Accretion only during burst star formation (SF)
- SF as in Blitz & Rosolowsky (2006) (Lagos et al. 2010)
- BH-BH mergers only redistribute the BH mass

- Accretion
- BH-BH mergers
- Starburst mode
- Hot-halo mode
- Disk instabilities
- Galaxy mergers

See also Croton et al. (2006); Lagos et al. (2008)
Modelling the active nucleus

1) Accretion rate calculation
2) Disk structure (thin-disk/ADAF) Shakura & Sunyaev (1973); Mahadevan (1997)
3) BH spin evolution (accretion and BH-BH mergers) King et al. (2005)
4) Bolometric corrections for optical, x-ray, UV emission Marconi et al. 2005)
6) Jet total and radio luminosity Blandford & Znajek (1977)
Modelling the active nucleus

- Hot gas
- Quasar
- Halo
- Thin disk
- Luminous disks
- Weak jets
- ADAF
- Under-luminous disks
- Strong jets

Central engine

Thin disk

Luminous disks

Weak jets

ADAF

Under-luminous disks

Strong jets

Introduction ★ GALFORM ★ The AGN model ★ Results ★ Summary-Conclusions
Predictions

1) BH spin

\[a = cJ / GM_{BH}^2 \]

2) Disk luminosities

episodic and random gas accretion: net spin is kept low!

BH-BH mergers have the opposite effect!

3) Scaling relations

<table>
<thead>
<tr>
<th>z</th>
<th>(<M_{\text{Halo}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>(\sim3\times10^{12} M_{\odot})</td>
</tr>
<tr>
<td>1</td>
<td>(\sim1.5\times10^{12} M_{\odot})</td>
</tr>
<tr>
<td>2</td>
<td>(\sim1.9\times10^{11} M_{\odot})</td>
</tr>
</tbody>
</table>
Predictions

1) BH spin

\[a = \frac{cJ}{GM_{BH}^2} \]

2) Disk luminosities

BH-BH mergers have the opposite effect!

3) Active BH mass function

Introduction ★ GALFORM ★ The AGN model ★ Results ★ Summary-Conclusions
Quasar luminosity functions

Optical

AGN are strongly obscured in the optical (and soft X-rays): $f_{\text{obsc}} = f_{\text{obsc}}(z, L)$

Bolometric (compilation of LF's from Hopkins et al. 2007)

NF et al. 2011 (arXiv:1011.5222)
The model suggests strong differential evolution for the different luminosity populations.
Quasar evolution

Soft X-ray luminosity function

The model suggests that obscuration has strong effect in the observed abundance of AGN.

NF et al. 2011 (arXiv:1011.5222)
Radio galaxies at $z=0$

Radio luminosity function

$$L_{\text{jet}} \propto (H/R)^2 B_\phi^2 M_{BH} ma^2$$

The AGN model

Powerful radio sources are found in the most massive haloes. This is where the high spin, high BH mass and ADAF accretion criteria are met.

Introduction ★ GALFORM ★ The AGN model ★ Results ★ Summary-Conclusions
The clustering of AGN

-- Quasars are more clustered than radio galaxies.
-- Radio galaxies are found in the extremes of the dark matter distribution.

Good agreement with Wake et al. (2008) & Donoso et al. (2010) results

NF et al., in prep.
The GALFORM galaxy formation model is coupled with a BH model to reproduce:

- The phenomenology of AGN in the local universe.
- The radio luminosity function in the local universe.
- The evolution of AGN (optical, X-rays, bolometrically).
- The clustering of AGN.

Our model suggests that:

- The complex evolution of AGN (downsizing) arises naturally from the interplay between the different accretion modes.
- The radio properties of an AGN seem to be determined by the spin and the accretion regime characterising the central BH.
- To reproduce the LF of radio galaxies the model requires that massive BHs (>10^8 M☉) should have higher spins than lower mass BHs.
- Quasars in the low redshift universe are found in ~10^{12.5} M☉. In contrast, radio galaxies inhabit 10^{14-15} M☉ haloes.