Probing outflows/inflows from DLA host galaxies with spatially extended Ly\(\alpha\) emission

Martin Haehnelt

in collaboration with:
Luke Barnes, Michael Rauch,
George Becker, Wal Sargent, Edoardo Tescari, Matteo Viel
Durham, 21 July 2011

Low mass galaxies at high redshift should reveal important clues on
- how feedback works and
- how gas gets into galaxies

space density

luminosity/mass

galactic winds? metal enrichment of IGM?

halo mass function

galaxy luminosity function

AGN feedback?
DLAs should populate the extreme faint end of the LBG populations
Blind ultra-deep longslit spectroscopy
27 spatially extended Lyα emitters at $2.6 < z < 3.6$

2300 km/s

Rauch et al. 2008

92 hours in a blank field with FORS!

$\frac{dN}{dz}$ comparable to that of DLAs

DLA host galaxies

space density: $3 \times 10^{-2} h_{70}^3 \text{ Mpc}^{-3}$
- Keck LRIS LS spectroscopy of the Hubble Deep Field North
- so far 40 hours on sky (Michael Rauch et al.)
Continuum counterparts are compact and indeed from the very faint end of the LBG population.
The emitters are as abundant but fainter as B dropouts in the HUDF!

Durham, 21 July 2011

Rauch et al. 2008
Haehnelt et al 2008
A joint model for the emission and absorption properties of damped Lyα absorption systems

Luke A. Barnes* and Martin G. Haehnelt
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA

velocity width distribution

\[
\log_{10}(v_w, X) = \begin{cases}
-2.5 & \text{for } v_{c,0} = 30\text{km/s} \\
-3.0 & \text{for } v_{c,0} = 50\text{km/s} \\
-3.5 & \text{for } v_{c,0} = 70\text{km/s}
\end{cases}
\]

\[\alpha = 3\]

cumulative incidence rate

\[dN/dz = \begin{cases}
0.6 & \text{for } f_d = 1 \\
0.5 & \text{for } f_d = 0.5 \\
0.3 & \text{for } f_d = 0.2
\end{cases}\]

Durham, 21 July 2011
The differential incidence rate of DLAS

Barnes & Haehnelt 2008

Durham, 21 July 2011
The Lyman-alpha emission depends strongly on the strength of a galactic wind.

Barnes et al. 2011

Durham, 21 July 2011
IFU spectroscopy should become an excellent tool to discriminate between the rather crude implementations of galactic winds in numerical simulations.
Breaking the spectral degeneracy between in and outflows

$z \approx 3.444$ lyman alpha emitting $V \approx 27$ galaxy

Lyman alpha emission line

Lyman alpha forest | DLA-trough

Rauch et al 2011b
DLA sits in front of blueshifted, extragalactic gas --> Infall

infalling filament fluoresces in Lyalpha (double-humped profile!)

\[\tau = 234.4, \quad J_x = 32.0 \]

Urbaniak & Wolfe 81

~50% of ionizing photons escape galaxy to hit blue infalling gas

Rauch et al. 2011
Summary

• very faint mostly spatially extended Lyα emitters detected at 2.67<z<3.75 in 92h deep FORS2 and 40h Keck exposure
 - very steep faint end of Lyα luminosity function
 - inferred incidence rate corresponds to that of optically thick QSO absorption systems
 - probably host galaxy population of DLAS and LLS detected (M_{tot}~10^{10}-10^{11} M_\odot, V_{vir}~50-150km/s); mainly powered by (spatially compact) star formation
 - building block of Milky-Way type galaxies
• Lyα most likely due to central star formation
• Lyα scatters in frequency and real space. Spatial extent and spectral shape is very sensitive to details of the kinematics of the gas.