

Probing outflows/inflows from DLA host galaxies with spatially extended Ly\alpha emission

Martin Haehnelt

in collaboration with:

Luke Barnes, Michael Rauch,

George Becker, Wal Sargent, Edoardo

Tescari, Matteo Viel

Low mass galaxies at high redshift should reveal important clues on

- how feedback works and
- how gas gets into galaxies

luminosity/mass

DLAs should populate the extreme faint end of the LBG populations

Blind ultra-deep longslit spectroscopy

Michael Rauch et al.

92 hours in a blank field with FORS!

space density: $3x10^{-2} h_{70}^{3} \text{ Mpc}^{-3}$

- Keck LRIS LS spectroscopy of the Hubble Deep Field North
- so far 40 hours on sky (Michael Rauch et al.)

Continuum counterparts are compact and indeed from the very faint end of the LBG population.

The emitters are as abundant but fainter as B dropouts in the HUDF!

A joint model for the emission and absorption properties of damped Ly α absorption systems

Luke A. Barnes* and Martin G. Haehnelt
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA

velocity width distribution

cumulative incidence rate

The differential incidence rate of DLAS

Barnes & Haehnelt 2008

Probing outflows/inflows

Barnes et al. 2011

The Lyman-alpha emission depends strongly on the strength of a galactic wind.

Barnes et al. 2011

IFU spectroscopy should become an excellent tool to discriminate between the rather crude implementations of galactic winds in numerical simulations.

Breaking the spectral degeneracy between in and outflows

Summary

- very faint mostly spatially extended Lyα emitters detected at 2.67<z<3.75 in 92h deep FORS2 and 40h Keck exposure
 - very steep faint end of Lyα luminosity function
 - inferred incidence rate corresponds to that of optically thick QSO absorption systems
 - probably host galaxy population of DLAS and LLS detected ($M_{tot} \sim 10^{10}\text{-}10^{11}~M_{\odot}$, $V_{vir} \sim 50\text{-}150$ km/s); mainly powered by (spatially compact) star formation
 - building block of Milky-Way type galaxies
- Lyα most likely due to central star formation
- Lya scatters in frequency and real space. Spatial extent and spectral shape is very sensitive to details of the kinematics of the gas.