(Galaxy Formation @ Durham Univ. 2011/7/21)

Mahalo-Subaru

Mapping Star Formation at the Peak Epoch of Galaxy Formation

Taddy Kodama, Masao Hayashi, Yusei Koyama, Ken-ichi Tadaki, Ichi Tanaka (NAOJ) and Mahalo-Subaru Team

A galaxy cluster RXJ0152 at z=0.83 (Subaru/Suprime-Cam)

What is the origin of the environmental dependence?

Nature? (intrinsic)

Need to go to high redshifts where age difference is boosted.

Nurture? (external)

Need to go to outer infall regions to see directly what's happening there.

Why Subaru?

★PISCES: ~10 X-ray clusters at 0.4<z<1.6 Kodama, M.Tanaka, Koyama, Hayashi, et al.

★MAHALO-Subaru: 7 clusters/proto-clusters at 1.5<z<2.5 Kodama, Hayashi, Koyama, Tadaki, I.Tanaka, et al.

Final cluster with M= 6×10^{14} M_{\odot}, 20 \times 20Mpc² (co-moving) (Yahagi et al. 2005; v GC)

Key questions

- What's going on in cluster outskirts at z<1.5?
- Is star formation activity boosted in high density regions (proto-clusters) at z>1.5?
- What triggers star formation activities in the proto-clusters?

What's going on in the groups and the outskirts?

"MAHALO-Subaru"

MApping HAlpha and Lines of Oxygen with Subaru

A narrow-band mapping of star forming galaxies at the peak epoch of galaxy formation at 0.4<z<2.5 (primarily at 1.5<z<2.5).

X Nearly complete and un-biased census of star forming galaxies to a certain limit in SFR.

environ-	target	2	line	λ	camera	NB-	conti-	ALMA	status
ment				(μm)		filter	nuum	visibility	
clusters	CL0024+1652	0.395	$H\alpha$	0.916	S-Cam	NB912	z'	Yes	Kodama+ '04
	CL0939+4713	0.407	$H\alpha$	0.923	S-Cam	NB921	z'	No	Koyama+ '11
	RXJ1716+6708	0.813	$H\alpha$	1.190	MOIRCS	NB1190	z', J	No	Koyama+ '10
	XCSJ2215–1738	1.457	[O11]	0.916	S-Cam	NB912	z'	Yes	Hayashi+ '10
	4C65.22	1.516	$H\alpha$	1.651	MOIRCS	NB1657	H	No	not yet
	Q1126 + 101	1.517	$H\alpha$	1.652	MOIRCS	NB1657	H	Yes	not yet
	Q0835 + 580	1.534	$H\alpha$	1.664	MOIRCS	NB1657	H	No	observed
	$\rm CL0332{-}2742$	1.61	[O11]	0.973	S-Cam	NB973	z, y	Yes	observed/analysed
	CIGJ0218.3-0510	1.62	[O11]	0.977	S-Cam	NB973	z', y	Yes	observed/analysed
	PKS1138-262	2.156	$H\alpha$	2.071	MOIRCS	NB2071	K_{s}	Yes	scheduled in S11A
	4C23.56	2.483	$H\alpha$	2.286	MOIRCS	NB2288	$K_{\rm s}, K_{\rm cont}$	Yes	Tanaka+ '11
	$\mathbf{USS1558}{-}003$	2.527	$H\alpha$	2.315	MOIRCS	NB2315	$K_{\rm s}, K_{\rm cont}$	Yes	scheduled in S11A
Fields	GOODS-N	2.19	$H\alpha$	2.094	MOIRCS	NB2095	$K_{\rm s}$	No	Tadaki+ '11
	(2.5 pointings)		[O11]	1.189	MOIRCS	NB1190	z', J	No	Tadaki+ '11
	SXDF	2.19	$H\alpha$	2.094	MOIRCS	NB2095	K	Yes	observed
	(3 pointings)		${ m H}eta$	1.551	MOIRCS	NB1550	H	Yes	not yet
			[O11]	1.189	MOIRCS	NB1190	z', J	Yes	not yet

Taddy Kodama (Subaru; PI), Masao Hayashi, Yusei Koyama (NAOJ), Ken-ichi Tadaki (Univ. of Tokyo), Ichi Tanaka (Subaru), Jaron Kurk (MPE), Carlos De Breuck (ESO), et al.

Broad-band colours (phot-z) are used to identify which emission line is in the NB filter.

Hidden star formation in the red sequence Ha emitters and AKARI 15µm sources on the red sequence RX J1716.6+6708 (z=0.81)

Dusty star forming galaxies on the red sequence

RX J1716.6+6708 (z=0.81) Koyama, et al. (2010)

The red Ha emitters are dusty star-forming galaxies in groups, and the key populations under the influence of environmental effects.

Inside-out propagation/truncation of star formation activities in clusters

 \Box H α emitters at z=0.81 (RXJ1716)

 \Box [OII] emitters at z=1.46 (XCS2215)

AGN contribution is an issue for [OII] at z~1.5

Hayashi et al. (2011) See Poster #5-17 by Hayashi, et al.

Two recently found, confirmed clusters at z~1.6

CIG J0218.3-0510 (z=1.62) in SXDF

CL0332-2742 (z=1.61) in GOODS-S

A proto-cluster around a radio galaxy USS1558-003 at z=2.53

Environmental dependence in SF activity at z~2.5?

Number density of Ha emitters (>40M $_{\odot}$ /yr) is 30 times larger in USS1558 (F1+F2) than in SXDF.

SF activity is boosted in the proto-cluster compared to the general field.

Why is SF activity boosted in the protocluster compared to the field at high-z?

Mergers and centralized starburst? or Disk-wide accretion and starburst?

We need to resolve galaxies both spatially and kinematically:

HST/WFC3 morphology (mergers or disk?)

IFU spectroscopy (outflow? rotation?)

ALMA (dense gas distribution? SF mode? kinematics?)

"Mahalo-Subaru"

CO(2→1) for z~1.5, CO(3→2) for z~2.5 @~100GHz SFR~20M_☉/yr (4hrs, 5σ) Dust continuum @450 µm–1.1 mm @ z>1.5 SFR~10M_☉/yr (2hrs, 5σ)

Summary

- Red emitters (dusty star-forming galaxies) are the key population in transition under the influence of environment.
- Star formation activity is probably biased in high density regions at high redshifts (z>1.5), and as time goes on, the peak activity is shifted outwards from cluster cores to the surrounding regions.
- MAHALO-Subaru + Gracias-ALMA will fully reveal the star formation history at the peak epoch of galaxy formation (1.5<z<2.5).

The End

