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Assembly of dark matter 
halos: Merger trees 

•  Monte Carlo - based 
on  Extended Press-
Schechter (EPS) 

     OR 
•  Extract from N-body 

simulations 

EPS conditional mass function 



Evolution of baryons 

Cole+00 



Cooling & infall of gas in halos 

Cole+00 



Star formation & SN feedback 

SFR timescale SN feedback 
efficiency 

SFR & mass 
ejection 

Cole+00 

SFR 



Galaxy mergers 

Dynamical friction timescale 



•  halos merge 

•  galaxies merge driven 
by dynamical friction in 
halo 

•  major mergers make 
galactic spheroids from 
disks 

•  major and (some) 
minor mergers trigger 
starbursts 

•  spheroids can grow 
new disks 

Mergers, morphology & 
starbursts 



Modelling galaxy SEDs with 
dust 

•  dust in diffuse medium 
and molecular clouds 

•  stars form in clouds and 
leak out 

•  Stellar luminosity from 
pop synthesis 

•  radiative transfer of 
starlight through dust  

•  physical dust grain model, 
distribn of sizes 

•  heating of dust grains -> 
dust temperature 
distribution -> IR/sub-mm 
emission 

GRASIL: Silva et al 1998   



Example SEDs of galaxies 
from GALFORM+GRASIL 

model 
Quiescent spiral                                   Ongoing burst 

dust 

stars 

Radio 
(thermal 
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GRASIL SEDs compared to 
local galaxies 

M51 (spiral)                                    M82 (starburst) 

•  GRASIL model can reproduce observed SEDs of  local 
galaxies, for suitable dust model parameters & SF history 

(Silva et al 1998, Bressan et al 2002, Vega et al 2008) 



Model with variable IMF 
•  Quiescent SF in disks: 

– Standard solar neighbourhood IMF 

•  Starbursts: 
– Top-heavy IMF 

–  Increases UV luminosities & metal
 production (hence dust masses) by     
 ~ 5x 

– Would get similar effect with Salpeter
 IMF truncated below ~ 5Mo 

€ 

dN /d lnm∝m0  

(Baugh+05, Lacey+08) 



        Why a top-heavy IMF?       
 Sub-mm source counts  
normal IMF                                  top-heavy IMF  

bursts 

quiescent 

total 

Sub-mm counts too low by factor ~50 for 
normal IMF 

total 

Baugh+05 



Redshifts of sub-mm
 galaxies 

S>5mJy 
For model to 
reproduce 
simultaneously: 
•  observed SMG 
number counts AND 
redshifts 
•  present-day galaxy 
properties (including 
opt/NIR LFs) 
•  in CDM framework 
- need top-heavy IMF  

model 

Median z~2 for S(850)>5mJy 



Obs constraints at z=0 
K-band LF                                        60 µm LF 

gas metallicity in disks                          disk radii 

HI mass function 

early/late-type  fractions 



Cosmic star formation
 history - theory 

•  Model predicts
 quiescent SF in disks
 dominates at low z<3,
 and merger-triggered
 starbursts at high z>3 

•  Rise from high-z due to
 buildup of DM halos 

•  Decline at low-z due
 longer gas cooling
 times in halos 

Lacey+11 



Cosmic star formation
 history - observations 

•  High-mass (m>5Mo) SFR
 predicted by model broadly
 consistent with obs 

•  HOWEVER, many
 uncertainties in obs
 estimates: 
–  Dust extinction (UV) 
–  SED shape (IR/sub-mm) 
–  SF histories 
–  Extrapoln of LFs to low L 
–  IMF 

=> Need more direct obs
 comparisons 

SFR in m>5Mo stars 

Obs compilation: Hopkins 2006 



Evolution of luminosity
 function in far-UV - model 

z=3-7                                              z=7-20 

•  UV LF at high L dominated by merger-triggered starbursts 
•  rapid decline at z>8 driven by buildup of  DM halos 

Dust-extincted Dust-extincted 

total 

starbursts 

Lacey+11 



Evolution of far-UV LF –
 comparison with LBGs 

•  Extends original 
agreement of  
model with LBG 
obs for z=3 
(Baugh+05) up to 
z=10 (including 
new  HST WFC3 
data) 
•  predict large UV 
extinctions           
(~ 2 mag) 

z=3 

z=8 z=10 

Lacey+11 

with dust 

no dust 

z=6 



Effect of top-heavy IMF on
 far-UV LF 

•  replacing top-heavy 
IMF in bursts by normal 
IMF has only modest 
effect on far-UV LF 
•  decrease in stellar UV 
luminosities partly 
compensated by 
decrease in dust 
extinction 

normal IMF 

top-heavy IMF 

no dust 

with dust 

Lacey+11 



Triggering & duration of LBG
 phase 

Triggering 
Duration 

•  predict most LBGs are bursts 
triggered by minor mergers        
- roughly consistent with obs 
morphologies 
•  typical duration ~ 20-50 Myr 

Gonzalez+11 

LUV > L* 

LUV > 0.1L* 



Evolution of UV half-light radii 

Obs: Oesch
+09 

0.12<LUV/L*<0.3                            0.3<LUV/L*<1  

Lacey+11 
Model predicts sizes in excellent agreement 
with HST obs 



Evolution of far-IR LF 

z=0.5 

z=1 

z=0 

z=2 

Model predictions 
in good 
agreement with 
total (8-1000 µm) 
IR LF inferred 
from IRAS, Spitzer 
& Herschel obs 
for z = 0-2 

Lacey+11, 
in prep 



Evolution of total IR LF – effect of 
starburst IMF 

z=0.5 

z=1 

z=0 

z=2 

•  Effect of  top-
heavy IMF in 
bursts on bright 
end of  LF 
increases with z 
•  model with 
normal IMF in 
bursts does not 
match obs evoln 

top-heavy 

normal 

Lacey+11, 
in prep 



Evolution of 250 µm LF 

•  250 µm predictions 
agree better with 
Herschel obs at z>0.5, 
where LF  more 
dominated by bursts 

•  overpredict  250 µm 
LF at z=0 

z=0 

z=1.5 

z=0.5 z=1 

z=2 

bursts 

quiescent 

total 

Lacey+11, 
in prep 



Total IR & 250-500 µm LFs at z=0 

Total IR 250 µm 

350 µm 500 µm 

•  at z=0, model 
agrees better with 
bolometric than 
monochromatic IR 
LFs 

•  problem with 
predicted dust 
SEDS in quiescent 
galaxies at low-z? 

Lacey+11, 
in prep 



Conclusions  
  CDM based models can explain wide range 

of galaxy properties in unified framework 

  Sub-mm galaxies seem to require top-
heavy IMF in bursts, once impose other 
obs constraints as well 

  Same model reproduces numbers & sizes 
of LBGs to z~10 

  And evolution of total IR LF to z~2 

  However, possible problems with stellar 
masses at high z & dust SEDs at low z 


