The Millennium Gas Simulations

Peter Thomas
and the Virgo Consortium
Conclusions

• We show that feedback from SNR and AGN in the L-Galaxies SA model are consistent with the observed properties of the ICM in clusters of galaxies

• We have re-run the Millennium simulation with the WMAP-7 cosmology

• We have created merger trees and SA galaxy catalogues using the Guo 2011 version of L-Galaxies (contact me if you want to use them)

• We use the SA galaxies as input to a hydrodynamical simulation:
 ◦ SNR contribute metals (but are inconsequential for entropy generation in massive halos)
 ◦ AGN heat the gas (and can reproduce the entropy and metallicity profiles of clusters)
The old Millennium Gas Simulations

- Millennium Simulation:
 - Tracks CDM only (+SA galaxies)
 - $N=2160^3$ particles
 - $L=500 \, h^{-1}\text{Mpc}$ (comoving)
 - WMAP1 cosmology ($\sigma_8=0.9$)

- Millennium Gas Simulation
 - Same large-scale structure as MS
 - Same volume as MS
 - Same cosmology as MS
 - Fewer (10^9) particles than MS
 - But also tracks gas (using SPH)

- Three models:
 - GO: gravity only
 - entropy generation through shocks only
 - PC: preheating plus cooling
 - gas is pre-heated to entropy floor of 200 keV cm2 at $z=4$
 - FO: feedback only (no cooling)
 - SN+AGN feedback using SA galaxies — for selected clusters only

- See papers by:
 - Hartley et al. 2008 (X-ray L-T relation)
 - Stanek et al. 2010 (Scaling relations)
 - Short et al. 2011 (Evolution of scaling rel.)
 - Young et al. 2011 (Baryon fractions)
 - Kay et al. in prep (SZ scaling relations)
Combining semi-analytics with simulations
The feedback model

- Type II supernova feedback:
 \[
 \Delta E_{\text{ejected}} = \frac{1}{2} \epsilon_{\text{halo}} v_{\text{SN}}^2 \Delta M_* - \frac{1}{2} \epsilon_{\text{disk}} v_{\text{vir}}^2 \Delta M_*
 \]
 Energy used to reheat cold disk gas
 Total energy available

- AGN feedback:
 - Adopt the Bower et al. (2008) AGN feedback prescription used in GALFORM
 - Available heating energy is given by:
 \[
 \Delta E_{\text{BH}} = \min \left\{ 0.1 \Delta M_{\text{BH}} c^2, \epsilon \Delta E_{\text{Edd}} \right\}
 \]
 Radio mode
 Quasar mode
 where $\epsilon = 0.02$ is the disk structure parameter

Feedback

Preheating
We resimulate clusters from the Millennium simulation using a variety of physical models for entropy generation.

Both preheating and feedback models match the gas fraction profiles of non-cool-core (NCC) clusters.
This figure shows the ratio of the observed to predicted gas fractions within r_{500}.

The feedback (FO) model is consistent with a constant value of unity. However, this is ruled out for the preheating (PC) model with high significance.

This argues strongly against a preheating model for entropy generation in the intracluster medium.
Entropic feedback scheme

Density feedback scheme

Entropy

Density

Temperature

Metallicity

An improved feedback mechanism
Chris Short, Peter Thomas

- Heating dominated by AGN.
- Radio jet/bubble affects only a fraction of particles
- Heating occurs with a duty cycle of 10^8 yr

- SNR important for injection of metals
- In clusters most metals are accreted — so inject within R_{vir}

- Optimal parameters:
 - Heating efficiency = Bower model
 - Radial extent affected = R_{vir}
 - Heating fraction per duty cycle = 0.01
Entropy

Entropy values are plotted against the radius in units of the Sun's radius, r/r_{\odot}, for two different feedback schemes: Observed — CC and Observed — NCC. The graphs show the variation of entropy K [keV cm2] with radius.

Density

Density values are also plotted against the radius in units of the Sun's radius, r/r_{\odot}, for the two feedback schemes. The graphs show the variation of electron density n_e [cm$^{-3}$] with radius.

Temperature

Temperature values are plotted against the radius in units of the Sun's radius, r/r_{\odot}, for the two feedback schemes. The graphs show the variation of temperature T_e [keV] with radius.

Metallicity

Metallicity values are plotted against the radius in units of the Sun's radius, r/r_{\odot}, for the two feedback schemes. The graphs show the variation of metallicity $Z_{\text{met,ISM}}/Z_{\odot}$ with radius.

Observations

Entropy slope

Entropy normalisation

Metallicity slope

The new Millennium Gas Simulation

• Simulation details:
 ○ WMAP-7 cosmology
 ○ Full Millennium Simulation resolution
 ○ Guo et al 2011 semi-analytics
 ○ Improved AGN feedback scheme
 ○ Metal enrichment from Type II, Type 1a & AGB
 ○ Without and with radiative cooling

• Status:
 ○ Testing complete in smaller boxes
 ○ DM-only simulation complete
 ○ SA model catalogue constructed
 ○ Gas simulation started

• Data products:
 ○ SA galaxy catalogue
 ○ X-ray/SZ cluster catalogues
 ○ Maps and full datacubes for each cluster

• Science:
 ○ SZ scaling relations and power spectra
 ★ relative contribution of core/halo/filaments
 ★ evolution
 ★ radio source contamination
 ○ X-ray properties of galaxy clusters and groups
 ★ in the WMAP-7 cosmology
 ★ self-consistent stellar population
 ★ entropy profiles that resemble those of NCC clusters
 ★ realistic population of both NCC and CC clusters
 ○ Metal enrichment of ICM/IGM/WHIM from a self-consistent stellar population and feedback model
 ○ Holistic models for clusters extending to high redshift: X-ray, optical, SZ, radio
Simulating cool-core systems Owain Young
Conclusions

- We have shown that feedback from SNR and AGN in the L-Galaxies SA model are consistent with the observed properties of the ICM in clusters of galaxies.

- We have re-run the Millennium simulation with the WMAP-7 cosmology.

- We have created merger trees and SA galaxy catalogues using the Guo 2011 version of L-Galaxies (contact me if you want to use them).

- We use the SA galaxies as input to a hydrodynamical simulation:
 - SNR contribute metals (but are inconsequential for entropy generation in massive halos).
 - AGN heat the gas (and can reproduce the entropy and metallicity profiles of clusters).