Dusty star-forming galaxies at high redshift

Caitlin M. Casey a,b,*, Desika Narayanan c, Asantha Cooray a

a Department of Physics and Astronomy, University of California, Irvine, CA 92697, United States
b Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr, Honolulu, HI 96822, United States
c Department of Physics and Astronomy, Harvard College, 370 Massachusetts Ave, Cambridge, MA 02138, United States

Abstract

Far-infrared and submillimeter wavelength surveys have now established the important role of dusty, star-forming galaxies (DSFGs) in the assembly of stellar mass and the evolution of massive galaxies in the Universe. The brightest of these galaxies have infrared luminosities in excess of $10^{11} L_\odot$ with implied star-formation rates of thousands of solar masses per year. They represent the most intense starbursts in the Universe, yet many are completely optically obscured. Their easy detection at submm wavelengths is due to dust heated by ultraviolet radiation of newly forming stars. When summed up, all of the dusty, star-forming galaxies in the Universe produce an infrared radiation field that has an equal energy density as the direct starlight emission from all galaxies visible at ultraviolet and optical wavelengths. A significant background of infrared light emanates from galaxies as diverse as gas-rich disks to mergers of intense starbursting galaxies. Major advances in far-infrared instrumentation in recent years, both space-based and ground-based, has led to the detection of nearly a million DSFGs, yet our understanding of the underlying astrophysics that govern the birth and end of the dusty starburst phase is still in nascent stage. This review is aimed at summarizing the current status of DSFG studies, focusing especially on the detailed characterization of the best-understood subset (submillimeter galaxies, who were summarized in the last review of this field over a decade ago, Blain et al., 2002), but also the selection and characterization of more recently discovered DSFG populations. We review DSFG population statistics, their physical properties including dust, gas and stellar contents, their environments, and current theoretical models related to the formation and evolution of these galaxies.

© 2014 Elsevier B.V. All rights reserved.
PART 1: THEORETICAL METHODS

PART 2: AS APPLIED TO DUSTY GALAXIES

PART 3: OBSERVATIONAL OUTLOOK
PART 1: THEORETICAL METHODS

<table>
<thead>
<tr>
<th>Semi Analytic Models</th>
<th>Idealized Simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmological Simulations</td>
<td></td>
</tr>
<tr>
<td>Zoom Simulations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Drawbacks</th>
<th>Codes/Campaigns</th>
</tr>
</thead>
</table>
PART 1: THEORETICAL METHODS

Semi Analytic Models

- Speed
- Can search parameter spaces efficiently
- Can isolate driving physical processes

Example

Advantages

- Highly simplistic view of galaxies (Fluid processes not simulated)
- Structure of Galaxies not simulated
- Subresolution scale at the scale of dark matter halos

Codes/Campaigns

- Durham SAM (GALFORM)
- Munich SAM
- Santa Cruz SAM

Somerville & Dave 2015

Granato et al. 2000
PART 1: THEORETICAL METHODS

Semi Analytic Models

Idealized Simulations

Cosmological Simulations

Zoom Simulations

Advantages

- Highest possible resolutions of all the methods
- Relatively fast to run
- Can run radiative transfer
- Can isolate internal processes

Drawbacks

- Non cosmological (no environment)
- Early phases dominated by ICs and lack physical information
- Not obvious how to simulate statistics

Codes/Campaigns

- Gadget/GIZMO
 (2000s papers from Hernquist group, Naab, Ostriker)
- Ramses
 (Teyssier, Bournaud, Martig)
- Gasoline
 (Governato, Brooks, Brook, Stinson, Christensen)
PART 1: THEORETICAL METHODS

Semi Analytic Models

Idealized Simulations

Cosmological Simulations

Zoom Simulations

Advantages

- Numerous halos/galaxies
- Cosmic environment included
- Can simulate deep fields

Drawbacks

- Even state of the art resolution is relatively poor (~10^6 M☉)
- Can be quite slow
- Not obvious you can resolve ISM enough to run RT

Codes/Campaigns

- EAGLE
- Mufasa
- Illustris
- BlueTides
PART 1: THEORETICAL METHODS

Semi Analytic Models

Idealized Simulations

Cosmological Simulations

Zoom Simulations

Advantages

- Resolution can approach that of idealized
- Cosmic environment included
- Can run RT
- Best of both (hydro) worlds

Drawbacks

- Super slow. Like, terrible.
- The most technically challenging out of the four methods
- Not obvious how to simulate statistics
- They’re destroying the planet with CO$_2$ emission

Codes/Campaigns

- FIRE
- Mufasa Zooms
- RAMSES Zooms

Example

Sick viz by J. Geach, R. Crain, D. Narayanan & R. Feldmann
WHAT ARE THEORISTS TRYING TO DO?

- Can we even make SMGs?
- What is the role of galaxy mergers/starbursts?
- What is the role of multiplicity?
- Do we require IMF variations?
- How do SMGs fit into a general model for galaxy formation?
PART 2: DUSTY GALAXIES

Missing: efforts since 2014 by Lacey, Cowley, Narayanan, Hayward

Casey, Narayanan & Cooray 2014

Graph showing the number of 1.4mm-selected DSFGs versus redshift.
PART 2: DUSTY GALAXIES

Semi Analytic Models
- Baugh et al. 2004
- Lacey et al. 2014
- Cowley et al. 2015, 2016

Idealized
- Chakrabarti et al. 2006
- Narayanan et al. 2008, 2010
- Hayward et al. 2010, 2011, 2014

Cosmological Simulations
- Dave et al. 2010
- Shimizu et al. 2012

Zooms

Key Predictions
PART 2: DUSTY GALAXIES

Semi Analytic Models
- Baugh et al. 2004
- Lacey et al. 2014
- Cowley et al. 2015, 2016
- Gonzalez et al. 2011

Idealized
- Chakrabarti et al. 2006
- Narayanan et al. 2008, 2010
- Hayward et al. 2010, 2011, 2014

Cosmological Simulations
- Dave et al. 2010
- Shimizu et al. 2012

(2008) Key Predictions
- \(<\text{duty cycle}> = 0.1 \text{ Gyr}\)
- \(<\text{M}^* > \sim 10^{10} \text{ M}_\odot\)
- 22% major mergers
- Flat Stellar IMF* in starbursts

(2016) Key Predictions
- Full galaxy formation model (unlike the rest) – reproduces tons of mass/luminosity functions
- \(dn/d\log M \sim \text{constant} \rightarrow dn/d\log M \sim M^{-1}\)
- \(M_{\text{halo}} \sim 10^{11.5-12} \text{ M}_\odot\) (confusion in clustering measurements can drive the observed values up by factor 10)
- 3-6 galaxies contribute 90% of the flux, (often unassociated)
PART 2: DUSTY GALAXIES

3-6 galaxies contribute 90% of the flux, (often unassociated)

Baugh et al. 2005, 2006

Lacey et al. 2016
PART 2: DUSTY GALAXIES

The first extension was introduced by Baugh et al. (2005). After an extensive exploration of the model parameter space, Baugh et al. concluded that the only way to reconcile the model predictions with observations of high-redshift galaxies was to adopt a top-heavy stellar IMF in bursts of SF triggered by galaxy mergers. This choice was not taken lightly. The framework of the GALFORM calculations imposes restrictions on the model parameter space that are widely underappreciated. By requiring that the model reproduce the local galaxy population, a large swathe of parameter space is immediately excluded (see Bower et al. 2010). Similarly, by adopting a self-consistent calculation of the extinction of starlight by dust and the radiation of this energy at longer wavelengths, much of the freedom present in more simplistic calculations (e.g. to set by hand the amount of dust extinction or the temperature of the dust) is removed. The Baugh et al. (2005) model gave an excellent match to 3-6 galaxies contribute 90% of the flux, (often unassociated)
PART 2: DUSTY GALAXIES

The first extension was in 2008, with an extensive exploration of the physical properties of galaxy populations, concluded that the only way to fit the observed luminosities of high-redshift galaxies is to adopt a flat IMF in bursts of SF that was not taken lightly. The problem imposes restrictions on the galaxy population, a large swathe of parameter space is immediately excluded (see Bower et al. 2010). Similarly, by adopting a self-consistent calculation of the extinction of starlight by dust and the radiation of this energy at longer wavelengths, much of the freedom present in more simplistic calculations (e.g. to set by hand the amount of dust extinction or the temperature of the dust) is removed. The Baugh et al. (2005) model gave an excellent match to

tl;dr the problem is simultaneously making

- Massive Galaxies that are realistic in physical properties, and that are super bright
- loads of cold dust.
- radiative transfer

3-6 galaxies contribute 90% of the flux, (often unassociated)
PART 2: DUSTY GALAXIES

Semi Analytic Models
Baugh et al. 2004
Lacey et al. 2014
Cowley et al. 2015,2016
Gonzalez et al. 2011

Idealized
Chakrabarti et al. 2006
Narayanan et al. 2008,2010
Hayward et al. 2010,2011,2014

Cosmological Simulations
Dave et al. 2010
Shimizu et al. 2012

(2008) Key Predictions
- Flat Stellar IMF* in starbursts
- \(<\text{duty cycle}> = 0.1 \text{ Gyr}\)
- \(<M^*> \sim 10^{10} \text{ M}_\odot\)
- 22% major mergers

(2016) Key Predictions
- Full galaxy formation model reproduces tons of mass/luminosity functions
- \(M_{\text{halo}} \sim 10^{11.5-12} \text{ M}_\odot\) (confusion in clustering measurements can drive the observed values up by factor 10)
- 3-6 galaxies contribute 90% of the flux, (often unassociated; though 1 typically dominates)
- \(dn/d\log M \sim \text{constant} \rightarrow dn/d\log M \sim M^{-1}\)

Hayward, Behroozi et al. 2013

Lacey et al. 2016
Cowley et al. series
(2016) Key Predictions

- Full galaxy formation model reproduces tons of mass/luminosity functions
- $M_{\text{halo}} \sim 10^{11.5-10^{12}} \text{M}_{\odot}$ (confusion in clustering measurements can drive the observed values up by factor 10)
- 3-6 galaxies contribute 90% of the flux, often unassociated; though 1 typically dominates
- $\frac{\text{d}n}{\text{d}\log M} \sim \text{constant} \rightarrow \frac{\text{d}n}{\text{d}\log M} \sim M^{-1}$

(2008) Key Predictions

- Flat Stellar IMF* in starbursts
- $<\text{duty cycle}> = 0.1 \text{ Gyr}$
- $<M^*> \sim 10^{10} \text{M}_{\odot}$
- 22% major mergers
- $S_v(850) > 5 \text{ mJy}$
PART 2: DUSTY GALAXIES

- Flat Stellar IMF* in starbursts
- \(<\text{duty cycle}> = 0.1 \text{ Gyr}\)
- \(<M^*> \approx 10^{10} \, \text{M}_\odot\)
- 22% major mergers

- \(dn/d\log M \sim \text{constant} \rightarrow dn/d\log M \sim M^{-1}\)
- \(M_{\text{halo}} \sim 10^{11.5} - 10^{12} \, \text{M}_\odot\) (confusion in clustering measurements can drive the observed values up by factor 10)
- 3-6 galaxies contribute 90% of the flux, (often unassociated; though 1 typically dominates)
PART 2: DUSTY GALAXIES

Semi Analytic Models
- Baugh et al. 2004
- Lacey et al. 2014, 2016
- Cowley et al. 2015, 2016
- Gonzalez et al. 2011

Idealized
- Chakrabarti et al. 2006
- Narayanan et al. 2008, 2010
- Hayward et al. 2010, 2011, 2014

Cosmological Simulations
- Dave et al. 2010
- Shimizu et al. 2012

(2008) Key Predictions
- Flat Stellar IMF* in starbursts
- \(<duty\ cycle> = 0.1\ Gyr\)
- \(<M^*> \sim 10^{10}\ M_\odot\)
- 22% major mergers

(2016) Key Predictions
- Full galaxy formation model (unlike the rest) — reproduces tons of mass/luminosity functions
- \(dn/d\log M \sim \text{constant} \rightarrow dn/d\log M \sim M^{-1}\)
- \(M_{\text{halo}} \sim 10^{11.5-10^{12}}\ M_\odot\) (confusion in clustering measurements can drive the observed values up by factor 10)
- 3-6 galaxies contribute 90% of the flux, (often unassociated; though 1 typically dominates)
PART 2: DUSTY GALAXIES

Semi Analytic Models
Idealized Cosmological Simulations

Key Predictions

- Flat Stellar IMF* in starbursts
- \(<\text{duty cycle}> = 0.1 \text{ Gyr}\)
- \(<M^*> \sim 10^{10} \text{ M}_\odot\)
- 22% major mergers

- Full galaxy formation model (unlike the rest) — reproduces tons of mass/luminosity functions
- \(dn/d\log M \sim \text{constant} \rightarrow dn/d\log M \sim M^{-1}\)
- \(M_{\text{halo}} \sim 10^{11.5} - 10^{12} \text{ M}_\odot\) (confusion in clustering measurements can drive the observed values up by factor 10)
- 3-6 galaxies contribute 90% of the flux, (often unassociated); though 1 typically dominates)

Narayanan et al. 2008, 2010
Hayward, Jonsson et al. 2010
Hayward, Narayanan et al. 2014

"Pair (Multiplicity)" Component
"Burst" Component

- SFR / \(4475 \text{ M}_\odot \text{ yr}^{-1}\)
- \(L_{\text{bol}} / 3 \times 10^{13} \text{ L}_\odot\)
- \(S_{850\mu m} / 9 \text{ mJy}\)
PART 2: DUSTY GALAXIES

Key Predictions

- Full galaxy formation model reproduces tons of mass/luminosity functions
- Flat Stellar IMF* in starbursts
- \(<\text{duty cycle}> = 0.1 \text{ Gyr}\)
- \(<M^*> \sim 10^{10} \, \text{M}_\odot\)
- 22% major mergers
- \(2.3S_{1.1} \sim S_{850} \text{ (mJy)}\)

Hayward, DN+ 2014

- \(dn/d\log M \sim \text{constant} \rightarrow dn/d\log M \sim M^{-1}\)
- \(M_{\text{halo}} \sim 10^{11.5-12} \, \text{M}_\odot\) (confusion in clustering measurements can drive the observed values up by factor 10)
- 3-6 galaxies contribute 90% of the flux, (often unassociated; though 1 typically dominates)
PART 2: DUSTY GALAXIES

Key Predictions

- Full galaxy formation model reproduces tons of mass/luminosity functions
- $dn/d\log M \sim \text{constant} \rightarrow dn/d\log M \sim M^{-1}$
- $M_{\text{halo}} \sim 10^{11.5} - 10^{12} \, M_\odot$ (confusion in clustering measurements can drive the observed values up by factor 10)
- 3-6 galaxies contribute 90% of the flux, (often unassociated)

Chakrabarti et al. 2006

Hayward, Jonsson et al. 2012
PART 2: DUSTY GALAXIES

Semi Analytic Models
Baugh et al. 2004
Lacey et al. 2014, 2016
Cowley et al. 2015, 2016
Gonzalez et al. 2011

Idealized
Chakrabarti et al. 2006
Narayanan et al. 2008, 2010
Hayward et al. 2010, 2011, 2014

Cosmological Simulations
Fardal et al. 2001
Dave et al. 2010
Shimizu et al. 2012

Key Predictions

- ~50% of SMGs are mergers
- ~50% of SMGs are blends
- Half of blends are unassociated
- Duty cycle (SB) ~ 0.1 Gyr
- $<M^*> \sim 10^{11} \, M_\odot$
We study the predicted sub-mm emission from massive galaxies in a Lambda-CDM universe, using hydrodynamic cosmological simulations. Assuming that most of the emission from newly formed stars is absorbed and reradiated in the rest-frame far-IR, we calculate the number of galaxies that would be detected in sub-mm surveys conducted with SCUBA. The predicted number counts are strongly dependent on the assumed dust temperature and emissivity law. With plausible choices for SED parameters (e.g., T=35 K, beta=1.0), the simulation predictions reproduce the observed number counts above \(\sim 1 \) mJy. The sources have a broad redshift distribution with median \(z \sim 2 \), in reasonable agreement with observational constraints. However, the predicted count distribution may be too steep at the faint end, and the fraction of low redshift objects may be larger than observed.

In this physical model of the sub-mm galaxy population, the objects detected in existing surveys consist mainly of massive galaxies (several \(M_\star \)) forming stars fairly steadily over timescales \(~10^8-10^9\) years, at moderate rates \(~100\) M_{Sun}/yr. The typical descendants of these sub-mm sources are even more massive galaxies, with old stellar populations, found primarily in dense environments. While the resolution of our simulations is not sufficient to determine galaxy morphologies, these properties support the proposed identification of sub-mm sources with massive ellipticals in the process of formation. The most robust and distinctive prediction of this model, stemming directly from the long timescale and correspondingly moderate rate of star formation, is that the far-IR SEDs of SCUBA sources have a relative high 850 micron luminosity for a given bolometric luminosity. [Abridged]
PART 2: DUSTY GALAXIES

- Top Heavy IMF* in starbursts
- \(<\text{duty cycle}\> = 0.1 \text{ Gyr}\)
- \(<M^*> \sim 10^{10} \text{ M}_\odot\)
- 22% major mergers

- ~50% of SMGs are mergers
- ~50% of SMGs are blends
- Half of blends are unassociated
- Duty cycle (SB) \sim 0.1 \text{ Gyr}
- \(<M^*> \sim 5 \times 10^{11} \text{ M}_\odot\)

Davé et al. 2010
PART 2: DUSTY GALAXIES

Semi Analytic Models
Baugh et al. 2004
Lacey et al. 2014
Cowley et al. 2015,2016

Idealized
Chakrabarti et al. 2006
Narayanan et al. 2008,2010
Hayward et al. 2010,2011,2014

Cosmological Simulations
Dave et al. 2010
Shimizu et al. 2012

Zooms

Key Predictions

- Top Heavy IMF* in starbursts
- $<\text{duty cycle}> = 0.1$ Gyr
- $<M^*> \sim 10^{10}$ M\text{☉}
- 22% major mergers
- ~50% of SMGs are mergers
- ~50% of SMGs are blends
- Half of blends are unassociated
- Duty cycle (SB) ~ 0.1 Gyr
- $<M^*> \sim 10^{11}$ M\text{☉}
- ~2% of SMGs are mergers
- SFR$_{\text{max}}$ \sim 600 M\text{☉}/yr
- Duty cycle \sim1 Gyr
- $<M^*> \sim 5 \times 10^{11}$ M\text{☉}
PART 2: DUSTY GALAXIES

Semi Analytic Models
Baugh et al. 2004
Lacey et al. 2014
Cowley et al. 2015, 2016

Idealized
Chakrabarti et al. 2006
Narayanan et al. 2008, 2010
Hayward et al. 2010, 2011, 2014

Cosmological Simulations
Dave et al. 2010
Shimizu et al. 2012

Key Predictions
- Top Heavy IMF* in starbursts
- \(<\text{duty cycle}> = 0.1 \) Gyr
- \(<M^*> \sim 10^{10} \) M\(\odot \)
- 22\% major mergers
- \~50\% of SMGs are mergers
- \~50\% of SMGs are blends
- Half of blends are unassociated
- Duty cycle (SB) \~ 0.1 Gyr
- Duty cycle \~ 1 Gyr
- \<M^*> \sim 5 \times 10^{11} \) M\(\odot \)

Zooms
- \~2\% of SMGs are mergers
- \(\text{SFR}_{\text{max}} \sim 600 \) M\(\odot \)/yr
- \<M^*> \sim 5 \times 10^{11} \) M\(\odot \)
PART 2: DUSTY GALAXIES

Narayanan, Turk, Feldmann et al. 2015, Nature
The central contributes ~70% of the total observed submm flux
Typically 3-4 associated counterparts

Narayanan, Turk, Feldmann et al. 2015, Nature
PART 2: DUSTY GALAXIES

- The central contributes ~70% of the total observed submm flux
- Typically 3-4 associated counterparts

PART 2: DUSTY GALAXIES
(In Cosmological zoom simulations)

Evolved star contribution to IR luminosity significant, can cause over estimates of SFR by factor ~2-3

Narayanan, Turk, Feldmann et al. 2015, Nature
PART 2: DUSTY GALAXIES
(In Cosmological zoom simulations)

Narayanan+ in prep.
PART 2: DUSTY GALAXIES
Connections to Lyman Alpha Blobs

1. Central starburst galaxies, detected with ALMA.
2. Surrounding satellites — Low mass companions. Most of these are too faint to detect directly.
3. Central galaxies are emitting Ly-α photons from star formation.
4. The photons scatter off clouds of cold gas in the circumgalactic medium. Most of the cold gas is around satellites.
5. Scattered Ly-α escapes to our line of sight, giving rise to extended blob.

= Cold gas (HI) surrounding galaxies
= Hotter gas in dark matter halo

Geach, Narayanan et al. 2016
ZOOMS: AWESOME FOR GALAXY FORMATION; HORRIBLE FOR THE ENVIRONMENT

- 2 lbs of CO₂ emitted per KW-h of electricity on average in the U.S.¹

- Every zoom at $M_{\text{bar}} \sim 10^5 M_\odot$ resolution takes 2 months on 768 cores

- This equates (to $z \sim 2$) to ~9K lbs of CO₂

 Assuming 135 W power supplies

- This equates to four (!!) round trips from Gainesville, FL to Durham, UK for 1 person

- (If you referee my papers, be cool)

 1. drill baby drill
PART 2: DUSTY GALAXIES

Semi Analytic Models
- Baugh et al. 2004
- Lacey et al. 2014
- Cowley et al. 2015, 2016

Idealized
- Chakrabarti et al. 2006
- Narayanan et al. 2008, 2010
- Hayward et al. 2010, 2011, 2014

Cosmological Simulations
- Dave et al. 2010
- Shimizu et al. 2012

Zooms
- Narayanan et al. 2015

Key Predictions

- Flat Stellar IMF
- \(<\text{duty cycle}\>) = 0.1 \text{ Gyr}
- 3-6 physically unassociated galaxies
- \(<M^*>\sim 10^{10} \text{ M}\odot\)
- \(~50\%\) of SMGs are mergers
- \(~50\%\) of SMGs are blends
- Half of blends are unassociated
- Duty cycle (SB) \(~0.1 \text{ Gyr}\)

- \(~2\%\) of SMGs are mergers
- \(\text{SFR}_{\text{max}}\sim 600 \text{ M}\odot/\text{yr}\)
- Duty cycle \(~1 \text{ Gyr}\)
- \(\langle M^*\rangle\sim 5\times 10^{11} \text{ M}\odot\)

- Mergers happen, but mostly unimportant
- \(\text{SFR}_{\text{max}}\sim 1500 \text{ M}\odot/\text{yr}\)
- Duty cycle \(~1 \text{ Gyr}\)
- \(\langle M^*\rangle\sim 5\times 10^{11} \text{ M}\odot\)
PART 3: OBSERVATIONAL OUTLOOK

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Why?</th>
<th>Obs Needed</th>
</tr>
</thead>
</table>
| M_{halo} | $10^{11.5} - 10^{13} \, M_\odot$
(SAM \rightarrow Cosmological Hydro) | Clustering |
| M^* | $\sim 10^{10} \, M_\odot - 10^{12} \, M_\odot$
(SAM \rightarrow Cosmological Hydro) | Strong NIR constraints for SED Modeling |
| Redshift Distribution | | $z > 4$ (c.f. HFLS3 and SPT 0311) |
| Multiplicity | Implicitly sets constraint on max (SFR, M_{dust}) of SMGs | 2D & 3D Mapping |
| IMF in present-day ellipticals | If IMF is bottom heavy in progenitors, we’re in trouble | Gravity-sensitive lines (e.g. FeH); dynamical modeling |
CONCLUDING THOUGHTS: 20 YEARS LATER, WE’RE STILL IN BUSINESS

The game:

- The fundamental challenge is forming a luminous enough source with an extended, cold dust spectrum in massive numbers.

Where we’re at:

- We have viable models that span 2 orders of magnitude in predicted galaxy and halo masses
- We’re all quite happy with multiplicity
- We disagree on the value of mergers

Where we need to be:

- Converged theory for SFH, Σ_{SFR}, and Σ_{dust}
- Theoretical Comparison Project (i.e. make life easy for observers)

Homework for Theorists

- What fraction of SMGs owe to mergers?
- What are the number counts and redshift distribution?
- What are the cospatial and unassociated multiplicity distribution functions?
- What are the distribution of M^*, M_{halo}, M_{H_2}?
- ? (For discussion)