Pan-STARRS1: Current Status and Early Large-Scale Structure Results

Daniel Farrow With Shaun Cole, Nigel Metcalfe, Peter Draper, Peder Norberg

- Introduce PS1 and its surveys
- Discuss the depth of PS1
- Present methods for star/galaxy separation
- Present methods to produce masks
- Show a recent science application of PS1 data

Pan-STARRS1 (PS1)

- A 1.8m on Haleakala, Maui
 - ~3 deg. fov
- Designed for transients, my interest is large-scale structure
- 5 optical/NIR bands (roughly SDSS griz + y)
 - Zeropoints: <10mmag scatter with SDSS. See Schlafly, Finkbeiner et al (2012)
- Photometric redshifts (see Saglia et al 2012)

Image Credit: Rob Ratkowski, copyright PS1SC

PS1 Surveys

- 3π Survey
 ~31,000 sq. deg.
 2 exposures per epoch,
 6 epochs over 3.5 yrs, total 12 exposures
- Exposure time in g,r,i,z,y are 43, 40, 45, 30 and 30 seconds
- See e.g. Metcalfe et al 2013 for more

Medium Deeps 10 * ~7 sq. Deg. fields **VST-ATLAS** overlaps with Medium Deep 02 Exposure times in g,r,i,z,y are 8*113, 8*113, 8*240, 8*240, 8*240 See e.g. Tonry et al 2012 **Recent LSS science: Lin** et al (2014)

LSS Science Goals (3π)

- Large area is biggest gain
- ISW effect
- Non-Gaussianities
- Cluster finding
- Testing galaxy formation models at higher redshifts

Observing Strategy

Stack images with different rotations & different centres to form the final picture. Dithering and rotation more complex than VST ATLAS strategy.

Daniel Farrow

Image Credit: Nigel Metcalfe (Durham)

PS1 Image Products

Stacks – stacked exposures Coverage maps Variance maps Images are split into 20 * 20 arcminute 'skycells'

Farrow et al (2014)

PS1 Magnitudes

- PSF magnitudes → good for stars
- Aperture magnitudes → good for photometic redshifts (still being tested)
- Kron magnitudes → good for extended sources
- Still in development: extended source fits and Petrosians

Small Area Survey 2

Density plot of PS1 detections over the small area survey:

Farrow et al (2014), see also Metcalfe, Farrow et al. (2013)

ЗП Depth

Metcalfe, Farrow et al. (2013)

3П Depth

Metcalfe, Farrow et al. (2013)

Star/galaxy Separation

- Me: use Kron PSF magnitude
- Nigel Metcalfe's: Use moments or size measurements too
- Nicolas Martin: Fit observed aperture PSF magnitude
- Robert Saglia et al.: Use optical colours
- Others..
- Star/galaxy separation group is comparing approaches

Star/Galaxy Separation

Detection Efficiency

- Depth varies across the image
- Adds extra terms to the correlation function
- Need to remove this
- Produce maps of depth versus angular position

Spatially Varying Depth

Depth varies with position on the sky

 I designed an estimator of depth, based on an empirical measure of SNR

$$SNR = F_{total} / \sqrt{\pi * d^2 * variance}$$

 Need to relate this SNR to detection probability, match PS1 detections to a deeper catalogue: Stripe 82

Calibrating the SNR method

Apply to full survey

Once curved of detected fraction versus fiducial SNR is measure, variance map can be used to predict depth across the whole survey → even in regions without Stripe 82 overlap data

Depth Map

Daniel Farrow

Farrow et al (2014)

Corrected Angular 2PCF

Daniel Farrow

Farrow et al (2014)

Extending to the full 3π

Extending to the full 3π

Recent Science Application

Kovács et al (submitted)

Conclusions

Introduced PS1 and surveys Discussed typical depth Discussed star/galaxy separation Presented method of producing maps of the spatially varying depth Presented a recent science application Produce masks for full survey, utilise once processing is complete!