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Ultra-faint Dwarf Galaxies:
Independent Bursts of Early Star Formation

e Old: ~13 + 1 Gyr age

e Metal-poor: [Fe/H] « -2 Biggest challenge: few stars.
e DM-dominated But we’re making progress!

e |ots of nearby UFDs (~50 known)

MZR line:
Kirby+13
Galaxy data:
Simon 19
compilation

Colored points = UFDs with detailed chemical abundances
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Outline

* High-resolution abundances in 3 UFD galaxies:
o Carina ll + lll: detailed abundances in two LMC satellites
* Reticulum II: now with 30-40 member stars
- Stay awake to learn about:
* The high-mass initial mass function (IMF)
 UFD gas dynamics

 |f time: metal-free (Pop Ill) signatures
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Carina Il and il
LMC Satellite Galaxies Found by MagLiteS

MSTO Stars
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Magellanic Satellites Survey Torrealba et al. 2018
(MagL.iteS) Carina ll: My=-4.5, Mstar~10*Me
Pl: Keith Bechtol Carina lll: My=-2.4, Mstar~103Me
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Carina Il and il
LMC Satellite Galaxies Found by MagLiteS

Dwarf galaxy sizes; resolved Carina ll
velocity and [Fe/H] dispersions . = Carll Mem

Car III Mem

A  Non Mem(v>220km/s)
*  Non Mem(v<220km/s)

Both associated with LMC
(Kallivayalil+18, Erkal+Belokurov19)

but not each other

New: R~30k Magellan/MIKE
spectroscopy (~22 elements) of
-10 Car |l stars (including 1 RRL)
- 2 Car lll stars

- 3/1 2 stars have [FG/H] < -3.5 Disltoance tf)OCar HBIO(arcnjiOn) N
- Clearly UFD (not GC)
abundances

Torrealba et al. 2018, T. S. Li et al. 2018, Ji et al. in prep



Today: focus on
la/Fel vs [Fe/H]

Core-collapse supernovae: a-enhanced

In this picture:
all [a/Fe] ratios
decline at
similar rate

<[a/Fe]>

Enrichment becomes
dominated by Type la:
Lots of Fe, little/no a

[Fe/H]

a-elements: O, Mg, Si, Ca, Ti
Alex Ji



[a/Fe] declines in both Car II, I

but not the same amount for Mg, Ca
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[Mg/Ca] corresponds to
CCSN initial mass

e.g. McWilliam et al. 2013
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[Mg/Ca] corresponds to

CCSN initial mass

e.g. McWilliam et al. 2013
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http://nugrid.github.io/NuPyCEE/

[Mg/Ca] corresponds to
CCSN initial mass

e.g. McWilliam et al. 2013

Dominated by >20 Msun CCSNe

Full IMF-integrated yield
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[Mg/Ca] slope varies in UFDs
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| MC and MW UFDs have

different [Mg/Ca] slopes
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a-elements in Car |l and |l

* Not all a-elements behave the same.
In Car Il, [Mg/Ca] clearly varies by a factor of ~5

* Possible explanations:
o Stochastic IMF sampling
e Systematic IMF variation
* Inhomogeneous metal mixing
* Type la SNe with high Ca yields

 LMC satellites* have stronger [Mg/Ca] variations:
Environment-dependent abundance signature”

Alex Ji



a-elements in Car |l and |l

* Not all a-elements behave the same.
In Car Il, [Mg/Ca] clearly varies by a factor of ~5

* Possible explanations:
o Stochastic IMF sampling
e Systematic IMF variation
* Inhomogeneous metal mixing
* Type la SNe with high Ca yields

 LMC satellites* have stronger [Mg/Ca] variations:
Environment-dependent abundance signature”

Alex Ji *Car Il currently dominates LMC satellite stars



Nucleosynthesis

Nuclear physics
Stellar evolution
Supernovae
Stellar populations

1

Normally,
X and H are

highly degenerate
—

Hierarchical galaxy formation
(Gas accretion and expulsion
Metal mixing
Star formation

Galaxy Formation
Alex Ji



Use the r-process galaxy Reticulum Il
to measure inhomogeneous metal mixing

* Most Ret Il stars
enriched by a
single neutron star
binary merger

* All r-process

elements
deposited at one
time:

. . . -40 -35 -30 -25 -20 -1.5
[r/H] distribution [Fe/H]
traces metal mixing Barium:

- good dynamic range
- easy to measure

Alex Ji
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Europium:
- traces r-process
- hard to measure

Ji et al. 2016



New Ret || Observations

» Goal: measure [Ba/H] scatter R e
17 Candidate Members . “ : S, e
® Ret Il Members o

e 12 hours FLAMES
+ 14 hours M2FS
around strong Ba line

e 32 clear members
+ 9 candidates
17+2 |Ba/H] measurements

o Confirms previous velocity and
metallicity dispersions:
ov=2.7+0.4 km/s
Ore=0.25+0.07 dex

Alex Ji Jietal. in prep



Well-mixed metals in Ret ||

N=17 (19)
([Ba/H]) = —1.56 £ 0.09
O[Ba/H] = 0.19+0.10
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A reasonable model for inhomogeneous mixing:
lognormal hydrogen dilution mass
Mean ~10% Msun, Scatter ~0.2 dex

Jietal. in prep



Well-mixed metals in Ret ||

N=17 (19)
([Ba/H]) = —1.56 £ 0.09
O[Ba/H] = 0.19+0.10
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A reasonable model for inhomogeneous mixing:
lognormal hydrogen dilution mass
Mean ~106 Msun, Scatter ~0.2 dex

Jietal. in prep



Ret || Takeaways

e 32 Ret |l members + 9 candidates confirm
previous velocity and metallicity dispersions

* [he r-process material is well-mixed in Ret |l
Can attribute ~0.2 dex [X/H] scatter to
iInhomogeneous metal mixing in UFDs

* |f the [Ba/H] trend is flat over large [Fe/H] range:
lack of pristine gas accretion?

Alex Ji



What is the Pop Il
Initial mass function?

 [wo approaches using Pop Il star abundances:

e Carbon-enhanced (CEMP) fraction:
Empirical signature likely associated with Pop lll stars

* Direct model fits: use grid of Pop lll CCSN yields to fit
detailed stellar abundances of the most Fe-poor stars
([Fe/H] < -3.5)

e UFD stars are great for this from theory side:
minimize galaxy formation degeneracies (but expensive)

e Carina Il/lll have 3 of the 9 most Fe-poor stars in UFDs

Alex Ji



The CEMP fraction of UFD stars
matches the MW stellar halo

—— [C/Fe] > 0.5 /
[C/Fe] > 0.7 80
[C/Fe] > 1.0
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Note: the most Fe-poor
stars in a given UFD
have similar [C/Fe]

O
o
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colored dotted lines: halo CEMP fraction

. colored solid lines: UFD CEMP fraction . .
Alex Ji Jietal. in prep



Pop Il CCSN Yields Can Fit
Most Fe-poor UFD stars

Car2-N033 e Two stars in Carina I,

M=12M, E=0.9B £=1.58e-02 x¥*=11.6
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one star in Carina lll with
[Fe/H] ~ -3.5

e Most-likely moderate
0 energy ~30 Msun SNe
(Heger+Woosley 2010)
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o Likely not external
enrichment
(unless the 1SN
assumption is broken)

log Dilution Mass (Mo) N
w >

4

qO 20 30 40 50 20
Progenitor Mass (M) Energy (10°! erg)

Alex Ji Jietal. in prep



The future: how many stars
are accessible per galaxy”

Current ELT
Capability Capability
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® Milky Way Satellites
- . - B Other Local Galaxies
Assuming ~1 night per field

(need multiobject spectroscopy) . . 100.0  316.2  1000.0 3162.3
and old metal-poor stellar pop distance from Sun (kpc)

Alex Ji Ji et al. 2019, Astro 2020 Decadal Survey White Paper



Summary

e Magellanic satellite galaxies Carina Il and lll:
Strongly decreasing [Mg/Ca] vs [Fe/H] trend
Signatures of IMF variation? Environment dependence?

e Reticulum Il: empirical measurement of metal mixing
Can attribute ~0.2 dex stellar [X/H] scatter to
iInhomogeneous metal mixing in UFDs

e Pop lll star signatures in UFDs do not appear to differ
from the MW halo

Alex Ji



