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Overview: Why do we care?

« AGNs can be an important source of feedback

Quench star formation
Reduce the number of DGs
Can help mitigate “too-big-to-fail” problem

Impact on the core density profile of DGs

(Silk 2017)
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Overview: Why do we care?

MBHSs crucial for understanding origin of SMBHs

MBHs mergers are prime targets for LISA

MBHs can teach us about fundamental physics of

accretion in low mass regime
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The Problem:
Low mass SMBHSs are hard to find!

Sphere of influence
of a 10° My, black
hole at 10 Mpc is
only 0.01"




The black hole mass desert

There is no direct evidence for black holes
between 60-1x10* Mg




IMBHs can only be found when accreting

Goal: Hunt for AGNs in low mass galaxies
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Challenges

« AGN identification

X-rays from corona  Optical from disk/NLR Radio from jet
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Challenges

« AGN identification

X-rays from corona Optical from disk/NLR

Radio from jet

« X-rays can be absorbed
« XRB contamination

-« » Optical can be obscured

* Host galaxy dilution

* IR sensitive only to dominant
AGNs

* Only 10% AGN are radio loud

Slide credit:
Adapted from D. Alexander



Limitations with X-ray Diagnostics
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«X-ray enhancement with metallicity > inlow At
eAlso ULXs? galaxies
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Limitations with Optical Diagnostics

eDust obscuration

(LLAGN can have very _
high N,;; Annuar et al. in R—
prep, Ricci et al. 2015) ' -

«Optical lines
dominated by SF
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eOverlap in low
metallicity AGNs
with SF on BPT
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Limitations of Optical Diagnostics
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Low Metallicity AGNs Look like SF Galaxies



Limitations with Optical Diagnostics
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Limitations of Optical
Diagnostics
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Low Mass AGNs Look like SF Galaxies




Optically Identified AGNs: Almost all in
Massive Bulge-dominated Hosts
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Only ~1% of dwarf galaxies host AGNs based on optical and X=ray surveys
(e.g., Reines et al. 2013, Pardo et al. 2016)
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Can't see IMBHs with current tools?




Infrared Spectroscopic Diagnostics
THE POWER OF JWST

» Insensitive to extinction | . EEMQ'VM
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Robust way to find low
luminosity AGNs



Infrared Spectroscopic Diagnostics
THE POWER OF JWST
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Photoionization Models

H* Region

[Mluminated
face

Letar = 104 erg s

\.:..
gas

= 1O040=7 (1 oro o
Lacy =100=10%erg ST @ ans _ 1225 (not

1 dex increments
( ) (0.5 dex increments) modeled)

Atomic/
molecular

Ionization front
(H*/Hioe = 0.001) CIOUdy




10"

Energy (eV)
10° 10° 10° 10’

Accretion Disk

T IIIIIII| T I,HI_.I..IJ”| T IIIIIII| T IIIIIII|
cavirl | 1SiX
SiVI
CalV ’

\

Soft Excess

Power Law Component ]

le-6

le-7

le-8 le-9 le-10 le-11
Wavelength (m)




Extreme Starburst SED

(

o
o
o
[t

)
o
D
N
©
E
S
c
E
=
A

1
Wavelength (um)




Integrated Modeling Approach

Satyapal et al. 2018



Integrated Modeling Approach

High lonization Lines

Satyapal et al. 2018



Integrated Modeling Approach

Satyapal et al. 2018



Integrated Modeling Approach

Satyapal et al. 2018



LLAGN: The Power of JWST
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LLAGN: The Power of JWST

AGN dominated
Seyfert i

50
%AGN

log([OIII]A5007/HR

star—formation
dominated

\
AGN AGN-+SF ‘\

mixed
-0.5 0

log([NII]A6583/Ha)

ULIRGS/LINERs
Obscured AGN

o
o
3

£

—

©
<

=
|

—
<

9

—

[4.6] - [12] in mog

Satyapal et al. 2019, in prep



The Power of Infrared
Spectroscopic Diagnostics

« Spitzer finds AGNs in low

bulge mass regime

* No sign of AGN in optical

» Detection rate 4X higher than

optical studies

Secrest et al. 2012 BN

(Satyapal et al. 2007,2008, 2009)
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IR Spectroscopy

Diagnostic Potential

Energy (eV)

 Lower mass black
holes have hotter
accretion disks

« Harder SED can
result in emission
from higher ionization
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Simulated Spectra

Fe VI] [Fe V]
[Si XI]

2 -1
cm s )

(erg

An

vF

| [Al IX]

| | 1
[Fe IV] [Fe VI| [Ar V] [Ne V]

| z
y ( 20

| |
2 3 4 3 _
Wavelength (LLm) Wavelength ((m)

Cann et al. 2018




IR Spectroscopy

Diagnostic Potential

R=600-2400 spectroscopy, emission line, point source
X]1.430

VI]1.962
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High ratios uniquely identify low mass black holes



IR Spectroscopy

Diagnostic Potential

High ratios uniquely identify mid-range black hole masses
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Initial comparisons to observations in
high-mass regime

« [Si VI]1.962/[SiX]1.430 - nggjvedvalues
line flux ratios from
BASS
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around 10’— 108 M

=
9
vl

x
n
=
>
)

=
9
)]

=
9
~

=
9
[ee]

=
9
o

Cann et al. 2018



First Detection: J1056+3138

Spectrum
Best Fit
Pa-a Narrow Component

Pa-a Broad Component
H2(19576) Component
Br-6 Component

[SiVI] Component

[SiVI] Flux: 5.92970 e-17

log(IN ll[/Ha) = -1.30

Flux (ergs/cm

~6-48% Solar
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First Detection: J1056+3138
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Key Take Away Points

* Dearth of IMBHs could be in part due to bias
introduced by wrong set of tools to find them

* IR coronal lines may be the best way to find them

* IR coronal lines may provide insight into their mass and
accretion properties




View optical and X-ray surveys of
AGNs in dwarf galaxies with
caution

"The real voyage of discovery consists not in seeing
new landscapes, but in looking with new eyes.”
-Marcel Proust
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