Dwarf Galaxies, Chemical Evolution, and the Future for the Primordial Helium Abundance

Evan Skillman University of Minnesota

Small Galaxies, Cosmic Questions Durham, August 2, 2019

CMB + BBN

- CMB Power Spectrum highly sensitive to Ω_B
- CMB+BBN
 => very high precision
 primordial abundance
 predictions
- $\Omega_{\rm B}h^2 = 0.02237 \pm 0.00015$
- $\eta = (6.12 \pm 0.04) \times 10^{-10}$
- $Y_p = 0.2447 \pm 0.0002$

CMB + BBN

- CMB Power Spectrum highly sensitive to Ω_B
- CMB+BBN
 => very high precision
 primordial abundance
 predictions
- $\Omega_{\rm B}h^2 = 0.02237 \pm 0.00015$
- $\eta = (6.12 \pm 0.04) \times 10^{-10}$
- $Y_p = 0.2447 \pm 0.0002$

Why do you care about N_{eff} ?

Riess + 2019

Y_p, D, BBN, the CMB, & N_{eff}

Cyburt, Fields, Olive, Yeh (2015)

Y_p & BBN

Cyburt, Fields, Olive, Yeh (2015)

- $Y_{p} = 0.2449 \pm 0.0040$ $\frac{D}{H} = (2.53 \pm 0.04) \times 10^{-5}$ $\Rightarrow \Omega_{B}h^{2} = 0.02228 \pm 0.00084$ $N_{v} = 2.85 \pm 0.28$
- w/ CMB $\Rightarrow \Omega_B h^2 = 0.02217 \pm 0.00022$ $N_v = 2.88 \pm 0.16$
- Izotov, Thuan, Guseva (2014) $Y_p = 0.2551 \pm 0.0022 \ \left(w / \frac{D}{H} \right)$ $\Rightarrow \Omega_B h^2 = 0.0240 \pm 0.0017$ $N_v = 3.53 \pm 0.25$

Y_p, BBN, & the CMB

Planck (2018)

(1) Add New Low z Targets

Hsyu+ (2013)

(1) Add New Low z Targets

Yang+ (2017)

(2) Reduce the Uncertainties

Skillman+ (2013)

Recent Improvements

- Higher Quality & Higher Resolution Spectra
 - LBT MODS Spectra
 - LBT near-IR Spectra
 - Include additional H I lines in solution
 - Include additional He I lines in solution
 - Improved atomic data for H collisional excitation
 - Improved modeling of underlying H and He absorption
- =>As a result, roughly factor of two reduction in He/H uncertainty on individual objects.

Summary

- BBN's ability to predict the light element abundances with high precision is a great accomplishment of the Big Bang model.
- Our current determination of the Primordial Helium Abundance agrees well with the CMB result.
- Self-consistent analysis of ⁴He using MCMC has proved insightful and effective.
- More targets and higher quality spectra are needed (and coming!).
- Constraints on N_{eff} will be tightened.