SPH Simulations of AGN Feedback In Galaxy Formation:
Doing First Things First - Tests of Bondi Accretion

Abstract

We aim to numerically test the assumption, that the central massive BH of a galaxy accretes
mass at the Bondi-Hoyle accretion rate (with ad-hoc choice of parameter values), made in
previous studies of cosmological simulations including AGN feedback. We perform simulations
of a spherically accreting system in the scale 0.1 - 200 pc, using the 3D SPH code Gadget-3. Our
system consist of a spherical distribution of gas accreting onto a central BH (the Bondi
problem), wherein we have studied how different gas properties (initial density and velocity
profiles) and computational parameters (simulation outer boundary) affect the central mass
inflow rate. We have included radiative heating and cooling in our simulations. Our ultimate goal
Is to incorporate these small-scale results into large-scale cosmological simulations, and refine
the AGN feedback prescription using our numerically computed parameters for BH accretion
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Table 1. Simulation runs: r;, = 0.1 pc. Initial condition: p;nit = pBond;- For Heat-Cool runs: Lx =5 x 1074 L g4 0.1 10 10.0 01 10 100
r (pc) r (pc)
Run (ase Yourn  Tout N Yinit  Too BBondi t Bond Pan f f'-fm{f’m ) Fig. 1 --- Bluef Bondi sqlution. Red: Particles fr.om simulation run 1. Note the
No. pc] K] pc] yr] g /cm?] M Bondi(Yrun, To)) group of particles fl9w1ng out of the computational volume at r_,;, because of
finite pressure gradient at the outer boundary .
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Adding Extra Physics : Radiative Heating & Cooling _
e Spherical X-ray corona of luminosity L, around central BH [1, 3, 6] ] :
* Photo-ionization parameter : £ AnFy Ly - Goitieattool! liimere GiBERN L N —
e Optically thin gas 2 Time /g
: CIO ¢ 4 h tg" ' n 5L Fig. 2 --- Mass inflow rate at inner radius. Bondi solution is reproduced within
et b B LA b A el limited time domain (for 4 x 104 yrs).

e X-ray photoionization heating - recombination cooling
e Bremsstrahlung & line cooling
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Fig. 3 --- Temperature vs. photo-ionization parameter of
particles, overplotted with the implemented cooling curve.
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Fig. 5 --- Mass inflow rate at inner boundary.
Close to steady-state with larger outer boundary.




