Black Holes, Galaxy Formation and the X-ray Universe

Richard Bower on behalf of the GALFORM and OWLS projects

GALFORM: RGB + Benson, Frenk, Lacey, Baugh & Cole + +++ OWLS: McCarthy, Schaye, RGB, Booth, Dalla Vecchia, Ponman, Crain, Springel, Theuns, Wiersma

Part I

What do black holes have to do with galaxy formation?

What do black holes have to do with galaxy formation?

- Black holes are interesting objects in their own right...
 - Test of strong gravity
 - Most luminous objects in the sky
- But what do they have to do with galaxy formation?

Making the connection with galaxy formation

- The three problems of galaxy formation
 - Faint galaxies far less abundant than the CDM mass function.
 - Sharp cut off at the bright end of the galaxy mass function
 - Lack of prolific star formation in central galaxies in clusters
 - Only 10% of the baryons condense into stars and cold gas
- Super-Novae may be the answer for faint galaxies?
- ... but what creates the break at the bright end?

The energetics of black hole formation

- Forming a BH releases plenty of energy
- But...
 - Is this all radiated away?
 - The BH is very small how can it affect the whole galaxy?
 - Is the process too stocastic?

Comparison of energies:

Thermal energy of a 10^{13} M_o halo ... 10^{61} erg

Accretion energy of a 10^9 M_o black hole $\dots 2 \times 10^{62}$ erg

It seems unlikely that AGN are unimportant!

The Two Modes of AGN Feedback

- The "Superwind" mode – Rapid accretion by the BH drives a powerful outflow of gas from the DM halo. The baryons leaves the halo and cannot cool.
- The "Radio" mode
 - Slow accretion on to BH powers radio jet. This heats surrounding gas preventing it from cooling.

Feedback expels material completely it is no longer available for cooling.

> Feedback energy heats the gas halo, cancelling radiative cooling

Benson et al 2003; Croton et al 2006; Bower et al 2006

The Two Modes of AGN Feedback MPORTANT! the really powerful escapes the gala

IMPORTANT! the wind needs to be really powerful - so that the material escapes the galaxies halo - is this observed???

- The "Superwind" mode
 Rapid accretion by the BH drives a powerful outflow of gas from the DM halo. The baryons leaves the halo and cannot cool.
- The "Radio" mode
 - Slow accretion on to BH powers radio jet. This heats surrounding gas preventing it from cooling.

Nesvadba et al. 2006, Alexander et al 2010

The Two Modes of AGN Feedback

Radio

- The "Superwind" mode

 Rapid accretion by the. BH drives a powerful outflow of gas from the DM halo. The baryons leaves the halo and cannot cool.
- The "Radio" mode
 - Slow accretion on to BH powers radio jet. This heats surrounding gas preventing it from cooling.

X-rays

Shock heating Uplifting matterial?

Mixed plasma and ICM?

M87: Forman et al 2006; Perseus: Fabian et al 2000, 2006

So we have some ideas - let's test them...

Semi-Analytic models

- A way to experiment with galaxy formation.
 - Add and subtract bits of physics
 - Control the way that BH affect galaxies
 - Fast so we can explore parameter space
- But "recipes" need to be justified by numerical experiments.

The "radio mode" feedback loop

Keres et al 2005; Dekel & Birnboim 2005; Binney 2004

"radio mode" feedback

- The "radio mode" suppresses cooling in massive haloes
 - Generates a sharp break in the luminosity function.
 - Natural scale set by hydrostatic vs rapid cooling.
 - Simply preventing cooling inconsistent with thermal Xray emission from groups and clusters.
 - Does not fix-up the properties of faint galaxies.
 Still need SNe to do that.
- See Nikos Fanidakis' talk for discussion of AGN properties in the model.

See also Croton et al., Cattaneo et al., De Lucia et al.; Kitzbichler et al., Somerville et al.

Part III.

Beyond galaxy properties: The (thermal) X-ray universe

Beyond Galaxy Properties

- But a successful model needs to do more that explain the observed properties of galaxies.
- The observed gas distribution in groups is puffed-up compared to clusters.
 - Simply preventing cooling in hydrostatic haloes is not enough - they actually contain fewer baryons.

Bower etal 08, Short & Thomas 08

The AGN feedback loop

Getting the (thermal) X-ray Universe right

- Expulsion feedback does more than offset the cooling luminosity of the clusters
- Rather the cooling rate is reduced by ejecting material from the halo until the cooling rate becomes small
- This model gets both the galaxy properties and the halo X-ray emission correct.

Bower etal 08, Short & Thomas 08

Why does it work?

Part III

(Change of gear) AGN feedback in numerical simulations

Puchwein et al. 2009; Fabjan et al 2010; Booth & Schaye 2009; McCarthy et al 2010

The OWLS simulations

- OWLS: over-whelmingly large simulations, Schaye et al. 2010
- Includes:
 - Star formation
 - SNe feedback
 - AGN growth and feedback (Booth & Schaye, 2009) [but no distinction between "radio" and "QSO" modes]

– And more...

McCarthy et al. 2009; McCarthy et al. 2010 - see also Craig Booth's talk.

(thermal) X-ray properties

Generate X-ray spectral-images
Measure temperature
Density
"Entropy"
Scale to quantities at r500 in ideal halo

McCarthy et al. 2009; McCarthy et al. 2010.

X-ray surface brightness map X-ray spectroscopic-like temperature [0.5-7.0 keV band]

What does the AGN do?

Low entropy gas is removed

- By forming stars (no AGN)
- By being ejected from system (with AGN)
- Both mechanisms match observed entropy profiles
- But only AGN feedback gives:
 - Low stellar fraction
 - Low BCG star formation rates
 - Good match to LF
- Why?
 - Expulsion feedback.

McCarthy et al 2009

What does the AGN do?

Low entropy gas is removed

- By forming stars (no AGN)
- By being ejected from system (with AGN)
- Both mechanisms match observed entropy profiles
- But only AGN feedback gives:
 - Low stellar fraction
 - Low BCG star formation rates
 - Good match to LF
- Why?
 - Expulsion feedback.

Gas mass fractions within r₂₅₀₀ and r₅₀₀

1.0 1.0 f_{gas}(r₅₀₀)/f_b f_{gas}(r₂₅₀₀)/f_b 0.1 REF 🛆 REF A AGN 📕 AGN 0.1 0.1 0.1 1.0 1.0 $T_{x,cor}$ (keV) $T_{x,cor}$ (keV)

• Energy input from supermassive black holes yields gas mass fractions in good agreement with observations. Fractions converge to cosmic for $M > ~10^{14} M_{sun}$: black holes are not powerful enough and the cooling time is long.

McCarthy et al. (2010), MNRAS, in press

Data from M. Sun et al. (2009)

get generated

Simulations have identical ICs. Follow a gas parcel over cosmic time in different sims to isolate effects of feedback, cooling, etc.

Entropy excess is generated very early - this is feedback by QSO winds. The material then has too much entropy to collapse into group haloes at z=0

What to remember!

- Black holes have a profound effect on galaxies
- But is it Qusars or Radio Galaxies?
 - Radio mode suppresses cooling
 - Fantastically good description of galaxies
 - But needs to do more than just prevent cooling
 - Superwind mode drives baryons out of halo.
 - Energetically preferable
- Observational evidence for the "radio" mode.
 Is there evidence for a superwind mode?

What Drives the Growth of Black Holes?

The formation of galaxies

The need for self-regulation

 Haloes always end-up with
 cooling time ~ Hubble time

One last thought

 Is the influence of BH on galaxy formation just "interesting", or is it profound" ?

 Is there a greater significance to the effect of feedback from black holes?

What does the AGN do?

Low entropy gas is removed

- By forming stars (no AGN)
- By being ejected from system (with AGN)
- Both mechanisms match observed entropy profiles
- But only AGN feedback gives:
 - Low stellar fraction
 - Low BCG star formation rates
 - Good match to LF
- Why?
 - Expulsion feedback.

 M_{500} (M_{\odot})

What does the AGN do?

Low entropy gas is removed

- By forming stars (REF)
- By being ejected from system (with AGN)
- Both mechanisms match observed entropy profiles
- But only AGN feedback gives:
 - Low stellar fraction
 - Low BCG star formation rates
 - Good match to LF
- Why?
 - Expulsion feedback.

McCarthy et al. (2010), MNRAS, in press

L_X-T and M₅₀₀-T relations

Data from Osmond & Ponman (2004) and M. Sun et al. (2009)

Star formation efficiency: K-band luminosities

Data from Lin & Mohr (2004); Rasmussen & Ponman (2009); Horner (2001)

