

The Clustering of Optical and X-ray AGN to z=1

Alison Coil (UCSD) Mirko Krumpe (UCSD) Takamitsu Miyaji (UNAM/UCSD)

The Spatial Clustering of ROSAT All-Sky Survey AGN:

I. The cross-correlation function with SDSS Luminous Red Galaxies Krumpe, Miyaji & Coil 2010, ApJ, 713, 558 arXiv: 1002.3598

II. Modeling with Dark Matter Halo Occupation Distribution Miyaji, Krumpe & Coil ApJ submitted

AGN Clustering: Why?

Can test AGN evolution models by measuring the observed clustering of AGN, ideally as a function of luminosity, redshift, BH mass, accretion rate.

Clustering measurements can constrain:

- host dark matter halo mass / large-scale environment
 - host galaxy type
 AGN lifetime
 - fraction of AGN in central vs satellite galaxies
 - quantitatively constrain models

Alison Coil

AGN Clustering: How?

Measure clustering using the 2-point correlation function, $\xi(r)$, which measures the probability of finding 2 objects with separation r in excess of a Poisson distribution:

 $dP = n (I + \xi(r)) dV$

In practice, compute by counting pairs of objects with a given separation compared to a random catalog:

 $\xi(r) = (DD(r) / DR(r)) - 1$

auto-correlation : same object sample cross-correlation : two different object samples

Alison Coil

AGN Clustering: How?

To robustly measure clustering, you need:

- spectroscopic redshifts
- large volumes

Alison Coil

• a well-defined and replicable selection function (spatial + z)

Large surveys such as SDSS, 2dF, AGES, DEEP2, zCOSMOS, etc. provide samples of 10s-100s thousands of galaxies which trace the cosmic web.

Galaxy clustering depends on color, luminosity, morphology: - brighter / redder / elliptical galaxies are more clustered than fainter / bluer / spiral galaxies More clustered means reside in more massive dark matter halos (quantified through dark matter simulations).

auto-correlation function

RASS AGN Sample

AGN sample: ROSAT All-Sky Survey (RASS)

(RASS: Voges et al. 1999, SDSS z's: Anderson et al. 2003, 2007)

color = soft-band hardness ratio

Alison Coil

- Selected in the soft 0.1-2.4 keV band
- Spectroscopic redshifts from SDSS
- 6224 broad-line AGN (we use 1552)
- 0.01 < z < 4 (we use 0.16 < z < 0.36)
- our L_X range ~ 10⁴³ 10⁴⁵ erg s⁻¹
- our average $L_X = 10^{44.3} \text{ erg s}^{-1}$

Tracer Sample

For the tracer sample, you want high number density (>> AGN) and a well-defined and replicable selection

Alison Coil

Clustering → Bias

From the AGN-LRG cross-correlation measurement:

- \rightarrow divide by the measured auto-correlation of LRGs
- → infer the AGN auto-correlation function

From the AGN auto-correlation function:

Alison Coil

- → derive the bias (how strongly a particular class of objects is clustered relative to dark matter)
- → infer the average host dark matter halo mass
- compare with clustering of galaxies to constrain host galaxy type

RASS AGN and galaxy bias vs. redshift

Alison Coil

RASS AGN and galaxy bias vs. redshift

Alison Coil

RASS AGN and other AGN bias vs. redshift

Alison Coil

Halo Occupation of RASS AGN

Alison Coil

Current and Future Work

• We are currently extending our redshift and luminosity baselines by measuring the cross-correlation of RASS X-ray AGN with both lower-redshift main SDSS galaxies ($z\sim0.1$) and higher redshift LRGs ($z\sim0.45$), as well as measuring the clustering of fainter AGN using optically-selected broad-line AGN in the same redshift range ($z\sim0.1-0.45$) (paper III, in prep.)

• We will then measure the clustering amplitude of the RASS AGN and SDSS QSOs as a function of black hole mass (typically ~10⁸) and Eddington ratio (range 1-50%) (paper IV).

Alison Coil

Current work of close collaborators

• James Aird (postdoc, UCSD) has quantified the evolution of the hard X-ray AGN LF to z~5 (see poster and arXiv: 0910.1141). He finds that the XLF retains the same shape but evolves in luminosity and density to z=3. There is *no* flattening of the faint-end slope at high-z. Has new results for low-luminosity AGN at z~4-5 from AEGIS-XD (800ks depth).

• Renbin Yan (postdoc, U Toronto) has proposed a new AGN optical line ratio diagnostic that does not require H-alpha and can be used at high redshift (see poster and arXiv: 1007.3494). He finds that X-BONGS (Xray bright, optically normal galaxies) are *not* a distinct population in terms of their OIII/X-ray ratio, and also finds that the Compton-thick fraction among Seyferts at z~0.6 is at least as high as that in the local Universe.

Alison Coil

Conclusions

- With the broad-line RASS sample, we have detected for the first time an **X-ray luminosity dependence** in AGN clustering.
- The clustering properties of z=0.25 high $L_X AGN$ are consistent with their host galaxies being red (quiescent), while low $L_X AGN$ are consistent with their host galaxies being blue (star-forming).

• The HOD of the RASS sample constrains the average dark matter halo mass to be $M_{halo}=10^{13.1} M_*/h$ (ie, **groups**), with higher mass halos (ie, clusters) having a **lower** AGN fraction. The halo mass range populated by AGN is **narrower** than that of galaxies. This is a very constraining result for models of AGN accretion and evolution.

Alison Coil