Massive black hole binaries in the remnants of gas-rich galaxy mergers

Collaborators: Monica Colpi Francesco Haardt Lucio Mayer Albino Perego Mateusz Ruszkowski Marta Volonteri

#### **Massimo Dotti** MPA



160 pc scale



## MBHs evolution in gaseous backgrounds



#### **Do the MBHs reach the final coalescence?**

What is the effect of CNDs on MBH masses and spins?

#### Initial conditions

#### Central MBH of $4 \times 10^6 \,\mathrm{M_{\odot}}$

Gaseous disk (Mestel):

$$\Sigma_{\rm Disk}(R) = \frac{\Sigma_0 R_0}{R}$$

 $M_{\text{Disc}} = 10^8 \text{ M}_{\odot}$   $R_{\text{Disc}} = 100 \text{ pc}$ Adiabatic evolution  $\gamma = 5/3$ ; 7/5

(+ shock heating) <u>Stellar</u> bulge (Plummer):

 $M_{\rm Bulge} = 7 \times 10^8 {
m M}_{\odot}$ 

$$\rho(r) = \frac{3}{4\pi} \frac{M_{\text{Bulge}}}{a^3} \left(1 + \frac{r^2}{a^2}\right)^{-5/2}$$

Equal mass merger:  
second MBH of 
$$4 \times 10^6$$
 M $\odot$  and  $e \approx 0.7$   
co- or counter- rotating

gas particles are accreted only if their total energy (kinetic + thermal + potential, in the reference frame of the MBHs) is less than a fixed fraction  $\varepsilon$  of the (negative) gravitational energy

 $(\varepsilon > 0.5, accretion possible only resolving the BHL radius of the MBHs!)$ 

a = 55 pc

#### Counter-rotating MBH ( $\gamma$ =5/3; h=0.1 pc) MD et al. 2009



# Co-rotating vs counter-rotating MBHs $(\gamma=7/5; h=0.1 \text{ pc}; \text{ only non accreting MBHs})$



#### MBH mass accretion





## **BP** effect: interpretation



# Spin evolution: Bardeen-Peterson effect

Perego et al. 2009



#### Spin evolution





### Spin evolution





Secondary BH

#### Primary BH

CRE=cold disc,retrograde orbit HPE=hot disc, prograde orbit

## **Recoiling MBHs**



#### MD et al. 2010



• MBH binary formation

• Circularization in circumnuclear disks (co-rotating MBHs) orbital angular momentum flip (counter-rotating MBHs)

• Predicted (variable) accretion processes during the inspiral

• Spins of the two MBHs align before they form a binary (Low kicks)

# Future steps

#### cosmologically motivated ICs

implementation of radiative cooling, SN and AGN feedback



Armitage & Natarajan 2002, 2005 Cuadra et al. 2009