New insights on nuclei of nearby galaxies from high angular resolution mid-IR observations

D. Asmus, W.J. Duschl, S. F. Hönig, H. Horst, A. Smette A. Comastri, R. Gilli, C. Vignali, R. Vasudevan

Unified AGN schematic picture

Dusty torus clouds heated by intrinsic AGN emission => infrared ∞ Intrinsic emission (e.g. X-rays)

Mid-IR difference between obscured/unobscured AGN

$$L_{\rm IR} \propto L_{\rm X}$$

/SO studies found **no difference** between AGN types,

Cause: - Intrinsic? - Selection effect due to low resolution?

VLT Imager & Spectrograph for the mid IR (VISIR)

- 8-13 µm (N band)
- VLT is diffraction-limited in N band

VISIR under the Cassegrain Focus of the 8.2-m VLT Melipal Telescope

Target selection : Sources with published intrinsic L_X , N_H .IR : VLT in ChileX-rays : variety of missions

VISIR under the Cassegrain Focus of the 8.2-m VLT Melipal Telescope ESO PR Photo 16a/04 (12 May 2004) © European Southern Observatory

VLT Imager & Spectrograph for the mid IR (VISIR) 8-13 µm (N band)

Swift

XMM-Newton

VISIR/VLT: Gandhi+09, Horst+2008

Results:

• $L_{\rm IR} \propto L_{\rm X}$

(as expected in Unification)

Mid-IR difference between obscured/unobscured AGN

VISIR/VLT: Gandhi+09

Results:

- Small dispersion in L_X/L_{IR} relation
- Type 1 and Type 2 follow same relation

Estimating intrinsic powers of Compton-thick AGN

1. [OIII] forbidden emission line as an isotropic indicator

2. Fe K α line equivalent width depends on intrinsic continuum and column density

3. Broad-band SED modelling if not severely Compton-thick

VISIR/VLT: Gandhi+09

Results:

- Small dispersion in L_X/L_{IR} relation
- Type 1 and Type 2 follow same relation

⁽Gandhi+09)

Theoretically, constrain dusty tori properties (see Hoenig+09, +10...).

Observationally very useful.

1. Mid-IR (especially resolved) : excellent isotropic probe of the intrinsic AGN power

Observationally very useful.

- 1. Mid-IR (especially resolved) : excellent isotropic probe of the intrinsic AGN power
- 2. Cleanly measure intrinsic AGN powers for first time.

Observationally very useful.

- 1. Mid-IR (especially resolved) : excellent isotropic probe of the intrinsic AGN power
- Cleanly measure intrinsic AGN powers for first time
 => decontaminate small aperture infrared data

Correcting small aperture data

27

Complete sample of Swift/BAT AGN $\lambda = L_{bol} / L_{Eddington}$

Low Eddington fractions => local AGN accreting inefficiently (Vasudevan+10)

Observationally very useful.

- 1. Mid-IR (especially resolved) : excellent isotropic probe of the intrinsic AGN power
- 2. Cleanly measure intrinsic AGN powers for first time => dust covering factors decrease with *L*.
- 3. New easy way to measure Compton-thick AGN powers.

Mid-IR spectroscopy: 0".75 slits

0.0

8

9

10

restframe wavelength (micron)

11

13

È 0.3 0. 0.0 13 8 9 10 11 12 restframe wavelength (micron) NGC4507 0.8 3 density 0.6 0.4 0.2 0.0 8 9 10 12 13 11 restframe wavelength (micron) NGC5643 3 0.1 0.3 0.

12

13

(Hoenig+10)

1. Resolve out extended emission

2. PAHs drastically reduced on small scales

(Sy 2s)

Residual Spitzer – VLT spectra = star formation

Summary

1. Mid-IR (especially resolved) : isotropic probe of the intrinsic AGN power of Seyferts and quasars.

2. Good estimator of Compton-thick AGN powers.

3. Tight correlation may be explained by clumpy tori.

4. Cleanly measure intrinsic AGN powers for first time => $\frac{\bar{a}}{2}$ dust covering factors decrease with *L*.

5. High resolution observations are resolving out nuclear star formation.

