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e Focus: Most luminous QSOs
(Nl‘ 10 Msun/yr)

* ‘Bottleneck’ at
<10-50pc: BH begins
to dominate the potential

(e.g. Goodman et al.,
Jogee et al., Martini et al.)
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Galaxy merger: good way to
get lots of gas to small scales!

If BHs trace spheroids, then
*most™* mass added in violent
events that also build bulges

Komossa



Problem:
Scale of merger: ~100 kpc
Viscous disk: ~0.1 pc

Solution 1: simple prescription

Solution 2: re-simulate
(“zoom 1n”’) and see what
happens!

Komossa



Simulations:
FOLLOWING THE GAS IN...

e Here: Focus on robust conclusions
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Simulations:

Li et al.
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Simulations:
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How do massive BHs get their gas?
CAN WE FUEL THE MONSTER?

e Cascade of instabilities:
merger not efficient
inside ~kpc

* Any mechanism that gets
to similar densities
at these scales will
do the same

* Instabilities change form
at BH radius of
influence




Sub-kpc scales: “Stuff within Stuff”

More Gas (f,,

 Diverse morphologies on
sub-kpc scales: not just bars!

e Inflow 1s not smooth/continuous

More Bulge (B/T)

100 pc
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e Gravity dominates torques from 0.1 - 10,000 pc:

S e Stars torquing on gas

stars
(color)

(contours)

e
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stars
e Build analytic models: (color)
e Structure a3
e Growth rates (contours) \

» Stability

e Inflow rates

standard (dissipationless) formulation: spiral waves
carry the angular momentum: (Lynden-Bell & Kalnajs “72)

|0J|2 Mdisk Mgas
|kR|2 Mtot tdyn

Minfiow = L[k, |a|]/Q R?* ~ (kR > 1)

with shocks & dissipation:

D
V2

M gas

tdyn

msign( — ;)
14+0InV./0InR

Minﬂow:Egastg‘ F(C) ~ ‘CL|

>100x larger!!!
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Actual inflow rate

Prediction
(gravitational
torques with shocks)

No dissipation
(Lynden-Bell+ 71)



Can we build a better accretion rate estimator?



Can we build a better accretion rate estimator?

Derive ‘Gravitational Torque’ Rate:
Disk ) 5/2
Total

. B _1/6 —3/2
M ~ 10 Mg yr L ( MBH,/S Mgas,9 R0,160



Inflow from ~kpc to ~0.1 pc 1s NOT viscous or Bondi-Hoyle
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So, what about the “small” scales

near the BH?



~10 pc scales: Nuclear eccentric disks

* Inside BH radius of
influence: develop
thick, precessing disks

* Need both star formation
and self-gravity

10 pc

More Gas (f.,,.) ———_————p

More BH / Nuclear Cluster




Eccentric/lopsided disks (m=1 modes) are special in a
near-Keplerian potential

Keplerian potentials
are special:

Kk = §)

Hence, closed
elliptical orbits!
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perturbation in the disk:

0. X COS M@




Eccentric/lopsided disks (m=1 modes) are special in a
near-Keplerian potential

Disturb the stars with some
perturbation in the disk:

02 X COS M ;

Generically, force some
deviations/torques/etc:

7~ (5) T

|
I epicycle | @
\




Eccentric/lopsided disks (m=1 modes) are special in a
near-Keplerian potential

Disturb the stars with some
perturbation in the disk:

02 X COS M ;

Generically, force some
deviations/torques/etc:

|
I epicycle | @
v (52) Mgisk (< 1) \

Ve 2 Mpn

But, if (and only if) m=1: N g ’
v (52) S~ -
V. by




* Gas-stellar exchange
dramatically enhances
torques

* Drives ~10 Mgun/yr
inflow

e [Leave relic stellar disks?




* These are observed!
M31, NGC4486B, many candidates
(NGC 404,507,1374,3706,4073,4291,4382,5055,5576,7619, VCC128, M32,83)

Lauer et al. 1993
Kormendy & Bender 1999




* These are observed!
M31, NGC4486B, many candidates
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Lauer et al. 1993
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e Outer radius R~1-10 pc

* Moderate thickness, high eccentricity



* These are observed!
M31, NGC4486B, many candidates
(NGC 404,507,1374,3706,4073,4291,4382,5055,5576,7619, VCC128, M32,83)
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* “run backwards”: the M31 disk implies accretion at
~0.5-3 Msun/yr (~LE4q) for ~100 Myr (~ Mgh) !



What about the obscuration from these disks?

* Lots of gas in this disk during
the inflow stages...




What about the obscuration from these disks?




What about the obscuration from these disks?

* The eccentric disk IS the torus!




What about the obscuration from these disks?

cs~15 km/s

* The eccentric disk IS the torus

* Occurs even if allow cooling and no stellar feedback!

* Heating by bending/warping modes, themselves
excited by the eccentric pattern




Summary

Fueling Most Luminous BHs:
Global gravitational instabilities CAN power ~10 Mgun/yr! Really!

e New Mdot estimator: neither viscous nor Bondi

“Stuff within Stuff”’: Cascade of instabilities with diverse morphology
e Doesn’t matter how first ‘get down’ from large scales

Accretion rates & orientations are stochastic
e Vary on all timescales
e Angular momentum changes rapidly - no correlation with host disk

The torus 1s the disk: a dynamical accretion driver
e Bending/warping instabilities: thick even without stellar feedback

Stellar nuclear disk ‘relics’: M31 & 4486b:
Can we directly observe the ‘fossil’ of the accretion driver & torus ?



