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• Focus: Most luminous QSOs 

     (~1-10 Msun/yr)

• ‘Bottleneck’ at 

    <10-50pc: BH begins 

     to dominate the potential 

        (e.g. Goodman et al., 

                  Jogee et al., Martini et al.)

~5 kpc

500 pc

<10 pc

<0.1 pc  Viscous disk/MRI

“bars within bars”

BH/nuclei merging

?
gravitational instability? (NO...?)

clumps? (NO)

viscosity? (NO)

MHD wind? (NO)

galaxy-galaxy mergers

disk instabilities



• If BHs trace spheroids, then 

   *most* mass added in violent 

   events that also build bulges

• Galaxy merger: good way to 

     get lots of gas to small scales!



• If BHs trace spheroids, then 

   *most* mass added in violent 

   events that also build bulges

• Galaxy merger: good way to 

     get lots of gas to small scales!

• Problem: 

     Scale of merger: ~100 kpc

     Viscous disk: ~0.1 pc

• Solution 1: simple prescription

• Solution 2: re-simulate 

    (“zoom in”) and see what 

    happens!
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Simulations:
 

  FOLLOWING THE GAS IN...

•  Need to include:

• Gas+Stars

• Self-gravity!

• Cooling 

• Star formation

      

• ‘Feedback’

      - Admit we don’t understand it!

• Here: Focus on robust conclusions

masers

 (Greenhill, 

Kondratko)

starbursts
(Downes+Solomon, 

Scoville, et al.)





How do massive BHs get their gas?
 

CAN WE FUEL THE MONSTER?

•  Cascade of instabilities: 

    merger not efficient 

    inside ~kpc

• Any mechanism that gets

    to similar densities 

    at these scales will 

    do the same

• Instabilities change form 

    at BH radius of 

    influence
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• Stars torquing on gas

gas 

(contours)

stars 

(color)

•  Gravity dominates torques from 0.1 - 10,000 pc:
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How does this work?

standard (dissipationless) formulation: spiral waves 

   carry the angular momentum: (Lynden-Bell & Kalnajs ‘72)

Ṁinflow = Γ[k, |a|]/Ω R2 ∼ |a|2
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• Build analytic models:

• Structure

• Growth rates

• Stability
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How does this work?

standard (dissipationless) formulation: spiral waves 

   carry the angular momentum: (Lynden-Bell & Kalnajs ‘72)

Ṁinflow = Γ[k, |a|]/Ω R2 ∼ |a|2

|kR|2
Mdisk

Mtot

Mgas

tdyn
(|kR|� 1)

with shocks & dissipation:

∼ |a| Mgas

tdyn
           >100x larger!!! 
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kpc

10 pc

Actual inflow rate

Prediction 

  (gravitational 

  torques with shocks)

No dissipation

  (Lynden-Bell+ ‘71)
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Can we build a better accretion rate estimator?

Derive ‘Gravitational Torque’ Rate:

Ṁ ≈ 10 M⊙ yr−1

� Disk
Total

�5/2

M−1/6

BH, 8 Mgas, 9 R−3/2

0,100
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Inflow from ~kpc to ~0.1 pc is NOT viscous or Bondi-Hoyle:
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So, what about the “small” scales 

near the BH?



~10 pc scales: Nuclear eccentric disks

• Inside BH radius of 

    influence: develop 

    thick, precessing disks

• Need both star formation 

    and self-gravity
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epicycle

Keplerian potentials 

   are special:

κ = Ω
Hence, closed 

  elliptical orbits!

Eccentric/lopsided disks (m=1 modes) are special in a 
     near-Keplerian potential

Disturb the stars with some 

     perturbation in the disk:

δΣ ∝ cos mφ

Generically, force some 

     deviations/torques/etc:
���
δv

Vc

��� ∼
�δΣ

Σ

� Mdisk(< r)
MBH

But, if (and only if) m=1:
���
δv

Vc

��� ∼
�δΣ

Σ

�



Relic, ~pc-scale nuclear 

   stellar disk....

• Gas-stellar exchange 

    dramatically enhances

    torques

• Drives ~10 Msun/yr

    inflow

• Leave relic stellar disks?



• These are observed! 

      M31, NGC4486B, many candidates 

   (NGC 404,507,1374,3706,4073,4291,4382,5055,5576,7619, VCC128, M32,83)

M31: 

Lauer et al. 1993
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M31: 

Lauer et al. 1993

Kormendy & Bender 1999

• M31 disk has ~0.1-1 MBH in old stellar mass

• Outer radius R~1-10 pc

• Moderate thickness, high eccentricity



M31 

• These are observed! 

      M31, NGC4486B, many candidates 

   (NGC 404,507,1374,3706,4073,4291,4382,5055,5576,7619, VCC128, M32,83)

• “run backwards”: the M31 disk implies accretion at 

       ~0.5-3 Msun/yr (~LEdd) for ~100 Myr (~ MBH) !
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• Lots of gas in this disk during 
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• The eccentric disk IS the torus!

• Lots of gas in this disk during 

     the inflow stages...



What about the obscuration from these disks?

cs~20 km/s cs~50 km/scs~30 km/s

cs~5 km/s cs~10 km/s cs~15 km/s

• The eccentric disk IS the torus

• Occurs even if allow cooling and no stellar feedback!

• Heating by bending/warping modes, themselves 

       excited by the eccentric pattern 



Summary

Fueling Most Luminous BHs: 
       Global gravitational instabilities CAN power ~10 Msun/yr! Really!

• New Mdot estimator: neither viscous nor Bondi

“Stuff within Stuff”: Cascade of instabilities with diverse morphology

• Doesn’t matter how first ‘get down’ from large scales 

Accretion rates & orientations are stochastic 

• Vary on all timescales

• Angular momentum changes rapidly - no correlation with host disk

The torus is the disk: a dynamical accretion driver 

• Bending/warping instabilities: thick even without stellar feedback

Stellar nuclear disk ‘relics’: M31 & 4486b: 
     Can we directly observe the ‘fossil’ of the accretion driver & torus ?


