What is driving extended, feedback inducing outflows around AGNs?

James Mullaney

Dave Alexander, Stephen Fine, Andy Goulding, Ryan Hickox, Mark Swinbank, Martin Ward

Thursday, 29th July, 2010 What drives the growth of black holes? Durham

Poster I.10: Paul Westerby

Why do we "need" AGN feedback?

Stopping star formation: Two modes

Radio Mode Feedback

Best et al, '05:

 $M_{\rm BH}^{0.6}$. Multiplying this by the fraction of time for which the AGN is active, the energy output scales as $M_{\rm BH}^{2.2}$. This is comparable to (or greater than) that required to counterbalance the gas cooling. Many aspects of this calculation are uncertain: in particular if

• "[The energy output of radio AGNs] is comparable to (or greater than) that required to counter the gas cooling."

Radio Mode Feedback

Best et al, '05:

 $M_{\rm BH}^{0.6}$. Multiplying this by the fraction of time for which the AGN is active, the energy output scales as $M_{\rm BH}^{2.2}$. This is comparable to (or greater than) that required to counterbalance the gas cooling. Many aspects of this calculation are uncertain: in particular if

• "[The energy output of radio AGNs] is comparable to (or greater than) that required to counter the gas cooling."

AGNs can produce other types of outflows:

Outflows seen in U.V. absorption lines, but extended only over small scales Crenshaw et al. '99 Also talks by Gallagher, Reeves

Radio quiet AGNs can also have extended outflows:

•z~2 sub-mm AGN.

- 3-4 orders of magnitude fainter at radio luminosities.
- •Unlikely to be driven by jets.
- Alexander et al '10 •Possible quasar mode feedback

Radio quiet AGNs can also have extended outflows:

...but how common are such systems?

Search the SDSS DR7 for prospective kpc-scale outflows

- •Explore the [O III] profiles of 'local' Type I AGNs.
- •24,627 AGNs at z<0.4 ([N II] coverage) •Type I AGNs: 10,554 (1096 NLSIs) •Type 2 AGNs: 13,713

Search the SDSS DR7 for prospective kpc-scale outflows

- •Explore the [O III] profiles of 'local' Type I AGNs.
- •24,627 AGNs at z<0.4)([N II] coverage) •Type | AGNs: 10,554 (1096 NLSIs) •Type 2 AGNs: 13,713

[O III]5007

Wavelength

Search the SDSS DR7 for prospective kpc-scale outflows

- •Explore the [O III] profiles of 'local' Type I AGNs.
- •24,627 AGNs at z<0.4 ([N II] coverage) •Type I AGNs: 10,554 (1096 NLSIs) •Type 2 AGNs: 13,713

Search the SDSS DR7 for prospective kpc-scale outflows

- •Explore the [O III] profiles of 'local' Type I AGNs.
- •24,627 AGNs at z<0.4 ([N II] coverage •Type I AGNs: 10,554 (1096 NLSIs) •Type 2 AGNs: 13,713

Start simply: Stack the entire Type I sample

Where do the outflows go?

But... are these 'outflows' really extended?

Conclusions...at least at z<0.4...

- AGN luminosity appears to be the most important factor in producing broad, blueshifted [O III] components.
- Radio luminosity or loudness has no clear influence on the profile of [O III].
- No difference in average profile [O III] between NLSIs and BLSIs.
- ~30% of local, luminous AGNs show evidence of possible feedback inducing outflows...
- •...but, not clear that these can escape potential of galaxy.
- Early evidence suggests that they are extended over kpc scales.