
AGN feedback in massive galaxies and galaxy clusters can be thought of  as a naturally occurring 
control system which plays a significant role in regulating both

 

star formation and the X-ray luminosity 
of the surrounding hot gas.  By analogy with the principle of least action

 

in classical mechanics, AGN 
feedback must also be optimal, in some sense. Therefore, the observed behavior of a system, if 
interpreted correctly, should provide valuable information about

 

the underlying physical principles 
which govern feedback. For example, AGN heating in elliptical galaxies and galaxy clusters seems to 
occur in relatively discrete episodes [1][2], as opposed to operating continuously at an approximately 
constant rate. Empirically, this occurs because AGN and star formation in Brightest Cluster Galaxies 
(BCGs) seem to be triggered whenever the central cooling time of the Intra-cluster Medium (ICM) falls 
below 0.5 Gyr

 

[3][4]. However, if this is the only consideration, why isn’t AGN heating perpetually 
triggered and quenched on very short timescales as the cooling time varies around the triggering value? 
Indeed, if this was the case, the AGN radio emission would appear to be continuous, in conflict with 
observations. One possibility is that there are time delays associated with the inflow of material on to 
the black hole and the dissipation of energy output from the AGN. Such time-delayed AGN heating 
would cause the system to overshoot its equilibrium state and oscillate between longer-lived “on”

 

and 
“off”

 

phases. Here we take a different approach and employ optimal control theory as a method with 
which to explore AGN feedback. Intriguingly, it is shown that AGN heating which minimizes the total 
energy output of the system

 

(gas cooling + AGN heating) implicitly balances gas cooling while also 
minimizing the black hole growth rate.  Furthermore,  such optimal heating necessarily occurs in 
discrete and periodic events with a duty cycle that is governed by the feedback strength. A direct 
consequence of this effect is that heating events will be sufficiently powerful to expel hot gas from the 
gravitational potential of a galaxy, but not a galaxy cluster. This is consistent with theoretical 
explanations for the observed steepening of the LX

 

-T

 

relation for temperatures below 1-2 keV

 

[5][6]. 
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Assume that the temporal evolution of the X-ray gas luminosity, LX

 

, due to its own radiative

 

cooling 
and applied AGN heating at a rate, H, can be approximated by an Nth-order linear differential 
equation of the form:

where aN

 

, aN-1

 

and a0

 

are constant coefficients. 

Observations of galaxy clusters [7][8] indicate that AGN heating

 

rates scale with the X-ray 
luminosity of the ICM, but heating is only triggered if the central cooling time falls below a critical 
threshold [3][4]. Therefore, AGN heating is expressed as H = α(t)kLX

 

, where k

 

(>1) is the feedback 
strength and α(t)

 

varies in the range 0-1 to represent the observed AGN triggering criterion.

To predict how α(t)

 

might vary, using the minimum number of assumptions, let us investigate the 
possibility that linear feedback heating acts to minimize the total energy output from the system. 
This constraint ensures that heating balances cooling with the minimum black hole growth rate. 
Then, for N =1, dimensional analysis suggests a0

 

=1 and a1

 

= -τ, and the optimal control problem 
for AGN feedback can be mathematically expressed as [9][10]:

where minimizing Eout

 

is equivalent to maximizing –Eout

 

.

For generality, the end state, LX

 

(t1

 

),  is left unspecified. In this case, the set of necessary boundary 
conditions is completed by λ(t1

 

)=0, where λ(t)

 

is the so-called costate

 

variable. This time-varying 
quantity adjoins the minimization constraint to the system dynamics in the optimal control 
Hamiltonian. According to Pontryagin’s

 

maximum principle [9][10], the optimal control maximizes 
the system Hamiltonian (F) which, for the case above, is given by:                       

Since F

 

is linear in α, it is minimized when α

 

takes its largest possible value 
(if ∂F/∂α

 

> 0) or its smallest possible value (if ∂F/∂α

 

< 0). The partial derivative of the 
Hamiltonian with respect to the control variable is:

Thus, α

 

will be 0 as λ(t)→0 towards the end of a heating/cooling cycle. However, earlier in the 
cycle, λ(t)

 

may be large enough to make ∂F/∂α

 

positive, in which case α

 

will be 1. Solutions such as 
this, which require the control variable to be held at one extreme and then shifted to the other 
are called “bang-bang”

 

controls [9][10].

The optimal switching time, t*

 

, which minimizes Eout

 

is found using:
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Only if the heating/cooling cycle begins/ends when LX

 

(t1

 

) = LX

 

(t0

 

)

 

does LX

 

(t)

 

evolve periodically. In 
this case, the duration of a single heating/cooling cycle is t1

 

-t0

 

= τ

 

ln(2) k/(k-1). Furthermore,

 

the 
duty cycle of AGN heating is δ ≡ t*

 

/(t1

 

-t0

 

) = 1/k. The figure below shows

 

the periodic evolution of 
LX

 

(t)

 

subject to optimal heating, with a feedback strength of k=10 so that

 

δ=1/10.

By definition, ∆E/EX

 

≡

 

actual mass flow rate / classical mass flow rate = (1-2δ)/[2(1-δ)], and is 
shown below.

By applying optimal control theory to AGN feedback, we arrive at the following conclusions:
•The total energy output of the system (gas cooling + AGN heating) is minimized if AGN feedback 
supplies heat in the form of discrete outbursts. This scenario minimizes the black hole growth rate 
while still ensuring that AGN heating balances gas cooling.
•If the heating/cooling cycle begins/ends when LX

 

(t1

 

) = LX

 

(t0

 

),

 

the solution of LX

 

(t)

 

will be periodic. 
In this case, there will necessarily be a difference between the

 

time-averaged AGN heating and gas 
cooling rates, permitting fuel to reach the AGN and on-going star formation in the host galaxy. 
•The optimal AGN heating duty cycle, δ, for a first-order system with linear feedback  (H = kLX

 

) is 
shown to be the inverse of the feedback strength, k, such that δ

 

= 1/k.
•Observations [1][2] indicate that duty cycles are smaller in systems with lower stellar masses. 
Comparison with the optimal feedback model suggests that the feedback strength is greater in 
elliptical galaxies than galaxy clusters. Then, if H = kLX

 

, this suggests that AGN heating episodes are 
proportionally more powerful in elliptical galaxies than in galaxy clusters. This is consistent with 
recent theories describing the steepening of the LX

 

-T

 

relation for temperatures below 1-2 keV

 

[5][6]. 
•The time-averaged black hole growth rate is LX0

 

/[ηc2ln(4)], where

 

η

 

is the accretion efficiency and c

 

is the speed of light.
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→ 0.5, as δ→0

∆E/EX

 

→0, as δ→0.5

Energy radiated by 
gas per cycle,    

EX

 

= LX0

 

τ

Energy input by AGN 
per cycle,                       

EH

 

= LX0

 

τk/[2(k-1)]
Total energy output per cycle 
Eout

 

= LX0

 

τ(3k-2)/[(2(k-1))]

Energy difference per cycle   
∆E= LX0

 

τ(k-2)/[2(k-1)]

For

 

δ

 

< ½, there will 
be a net mass inflow 
allowing material to 

cool and form stars in 
the host galaxy

For δ

 

> ½, there 
can be a net mass 
outflow. This

 

may 
prevent fuel 

reaching the AGN 
and explain the 

apparent absence of 
duty cycles greater 
than 50%

 

even in 
rich cool-core 
galaxy clusters

Time-averaged 
black hole 

growth rate is 
LX0

 

/[ηc2ln(4)]
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