Ultrafast Outflows in AGN and their role in Feedback

James Reeves

Collaborators:- J. Turner, L. Miller, V. Braito, A Lobban, J. Gofford, F. Tombesi, S. Sim, K.A. Pounds, P.O'Brien, M Ward.

Ultrafast Outflows in AGN

• How much mass is carried out of the AGN by the outflow - need to know *covering fraction* and location of the outflow.

- How does it compare to the amount of matter being accreted?
- Does the ionized outflow carry a significant fraction of the energy output of the AGN? - Continue (Outflow velocity)³

[c.f. E=10⁵⁹ erg binding energy of a bulge with 10¹¹ M_{solar} and σ =300 km/s.]

•Can the outflow regulate the growth of the black hole and the galaxy (bulge) through feedback, i.e. a physical explanation of the M-sigma relation (e.g. King & Pounds 2003; King 2003, 2010)?

High-velocity outflows, with v~0.1c in high accretion rate AGN, are potentially energetically significant.

Discovery of Fast Outflows with XMM-Newton

PDS 456, z=0.184, (Reeves et al. 03)

Blue-shifted absorption due to highly ionized iron (e.g. Fe XXV) as well as Mg/Si/S.

Velocities implied are 0.1-0.2c, launched from < 100Rg, with columns >10²³ cm⁻². Suggests kinetic power can approach L_{bol}.

Also X-ray BAL QSOs (Chartas et al. 2003)

High Ionization Outflow in NGC 4051 (Lobban et al. 2010)

NLS1 z=0.00236, $M_{BH} = 1.7 \times 10^6 M_{\odot}$, $L_{bol} = 2 \times 10^{43} \text{ erg s}^{-1}$

High Ionization absorption lines present at Fe K (6.81 keV, 7.11 keV). Outflow velocity of **5000-6000 km s⁻¹** c.f. He and H-like Fe.

High velocity (6000 km s⁻¹) component also associated with O VIII Ly α .

Blueshifted Iron K absorption in NGC 4051

Blueshifted Iron K absorption in NGC 4051

Location of the Outflow in NGC 4051

Figure adapted from Krongold et al. (2007)

High ionization outflow in NGC 4051 requires $N_H \sim 10^{23}$ cm⁻², log $\xi \sim 4$ and $v_{out}=0.02c$ [Note BH mass of NGC 4051 = 1.7×10^6 M_{\odot}; Denney et al. 2010]

Outflowing matter at ~*1 lightday* (<6000 Rs) from black hole - - an accretion disk wind?

Mass outflow rate ~ 0.05 M_{\odot} yr⁻¹ \Rightarrow Outward momentum rate = L_{Edd} / c L_{out} ~ 10⁴² erg s⁻¹ \Rightarrow **10⁵⁷ erg s⁻¹** over AGN lifetime

The Most Luminous Nearby Quasar PDS 456

Discovered a decade ago (Torres 1997) - very luminous broad-lined radio-quiet QSO at z=0.184. Most luminous AGN at z<0.3, more typical of z~2 QSOs - $L_{IR-UV} \sim 10^{47} erg/s$ (1.7 x

Relativistic Outflow in PDS 456 (QSO, z=0.184)

(200ks Suzaku Observation; Reeves et al. 2009)

Absorption lines observed with Suzaku at 9.08/9.66 keV (rest frame)

Outflow velocity of 0.25-0.30c, if associated with Fe XXV/XXVI resonance lines (at 6.7-6.97 keV).

Requires N_H=5x10²³ cm⁻², with logξ=4.5 to model strong absorption lines. Detection very robust (MC) >99.9% confidence.

PDS 456 Outflow Energetics

- PDS 456 observables:- $N_H \sim 10^{24} \text{ cm}^{-2}$, log $\xi \sim 4.5$ and $v_{out}=0.25c$, $L_{ion}=3x10^{45} \text{ erg s}^{-1}$, $L_{bol} \sim 10^{47} \text{ erg s}^{-1}$. BH mass estimate $M_{BH}=2x10^9 M_{sun}$.
- Outflow Rate $M_{out} = 4\pi b n R^2 m_p v_{out} = 4\pi b m_p v_{out} L_{ion} / \xi \sim 100 M_{sun} \text{ yr}^{-1}$
- Kinetic output $L_{out} = 1/2 M_{out} v_{out}^2 \sim 10^{47} \text{ erg s}^{-1} \sim L_{bol} \sim L_{Edd}$.
- Likely wind radius $\sim 30 300 R_{q}$
- If $L_{out} \sim 10^{47}$ erg/s for lifetime of QSO phase (t >10⁷ yr) then $E>10^{61}$ erg [c.f. E=10⁵⁹ erg binding energy of a bulge with 10¹¹ M_{solar} and σ =300 km/s.] \Rightarrow May produce significant feedback.

Critically depends on the covering fraction and outflow duty cycle.

XMM-Newton Sample of Iron K Absorption Lines "The search for UFOs" (Tombesi et al. 2010)

Tombesi et al. (2010) have systematically analysed a sample of X-ray bright AGN selected from the RXTE slew survey and observed by XMM-Newton to compile a sample of Fe K absorption lines

UFOs **UFOs** 30 40 Fraction (%) 20 20 10 0.1 0.2 0.3 0.2 0.1 0.3 0.4 0 0 Blue-shift velocity (v/c) Blue-shift velocity (v/c) <u>Mean blue-shift $v_{out} = -0.103 \pm 0.004c$ </u> (i.e. v~0.1c as predicted for a momentum driven outflow - see Andrew King talk)

Distribution of Outflow Velocities

Radiatively Driven Accretion Disk Winds

- Disk winds simulations of Sim et al. (2010), Proga & Kallman (2004)
- Reproduces the blue-shifted absorption lines at Fe K

Do both RL and RQ AGN have outflows?

- Radio-Loud AGN have powerful, relativistic jets on Mpc scales
- Radio-quiet AGN sub-relativistic disc winds instead of jets?
- Some RL AGN may also have winds (Tombesi et al. 2010b)

Radio/optical superposition

Copyright (c) NRAO/AUI 1999

Copyright (c) NRAO/AUI 1999

Outflow in 3C 445 (see poster by Jason **Gofford**) BLRG at z=0.0562. Luminous $L_{bol} > 10^{45} \text{ erg s}^{-1}$, $M_{\rm BH} = 10^8 \, {\rm M}_{\odot}$ Highly absorbed X-ray continuum:- $N_{\rm H} = 2 \times 10^{23} \text{ cm}^{-2}$, $\log xi = 2-4$ $v_{out} = -10000 \text{ km s}^{-1}$

Photoionised soft X-ray emission lines - originating from BLR scale gas.

Geometry of 3C 445

Inclination $\sim 60^{\circ}$ Radio- jet axis Photoionised Line of sight Emitter Ο O Highly ionised outflow 0 (homogenous) Q-0 O Lowly ionised О outflow ("Clumped") Ó 0 \Box 10^{16} 10^{17} 10^{18} 10^{19} cm 15

Ultrafast outflows in AGN

 How much mass is carried out of the AGN by the outflow? In the high v outflows, mass outflow rates can be a few x solar. Global covering at least 40% - disk driven outflows appear common in both radio--quiet and radio-loud AGN.

• How does it compare to the amount of matter being accreted? For high accretion rate AGN, a substantial fraction is driven in the outflow, i.e. $M_{out} \sim M_{Edd}$.

 Does the ionized outflow carry a significant fraction of the energy output of the AGN?
Yes, for some AGN (e.g. PDS 456, up to L_{out}~10⁴⁷ erg/s).

•Can the outflow regulate the growth of the black hole and the galaxy (bulge) through feedback?

•Yes - given high covering, velocities and duty cycles of outflows.