

ULXs: a local template for super-Eddington black hole growth

Tim Roberts

Motivation

Super-massive black holes mainly grow from accretion processes at or above the Eddington limit (e.g. King 2010)

But most of this done by z ~ 2; difficult to study these accretion processes in situ

From Fanidakis et al. 2010

Where to look?

- If we want to study local super-Eddington systems, two options:
 - Study super-Eddington AGNs (e.g. extreme NLS1s?); but few in number
 - Study smaller BHs; but most Galactic stellar BHs sub-Eddington

From http://mintaka.sdsu.edu/ faculty/orosz/web/

A third way: ULXs

- Ultraluminous X-ray sources (ULXs): brightest extranuclear X-ray sources, with L_x>10³⁹ erg s⁻¹
- Although some interlopers at these luminosities (e.g. rare SNe), most ULXs thought to be accreting BHs
- 400+ known candidates

Why are ULXs so interesting?

- \square Eddington limit for 10 M_{\odot} BH ~ 10³⁹ erg s⁻¹
- So to produce extreme luminosities in ULXs, require one of the following
 - Large BH mass (>> 10 M_☉)
 10² 10⁴ M_☉ Intermediate-Mass Black Holes (IMBHs;
 e.g. Colbert & Mushotzky 1999)
 Combined in latest
 - Radiative anisotropy

Rapid BH growth; strong radiativelys driven wind (e.g. Poutanen et al.

Super-Eddington emission -

2007, King 2008)

ULX spectral basics

Stobbart, Roberts & Wilms 2006

- Results from XMM-Newton data
- ULXs don't fit in with sub-Eddington BH states
- 2-10 keV spectrum fitted by a broken power-law in all of the highest quality data: not seen in sub-Eddington states
- ULXs are in a super-Eddington, ultraluminous state (Roberts 2007)
 - Small black holes!

Holmberg IX X-1: EPIC-pn data, IMBH model fit

Physical models Gladstone, Roberts & Done 2009

- Revisit results of Stobbart et al. (2006), using superior archival data
- Look at disc plus corona models (illustrated above) fits give cool discs (0.2 - 0.8 keV), optically thick coronae (6 < τ < 80) in *all* cases
- But assumptions made inner disc visible, unaffected by optically thick corona

Coupled disc-coronae

- Can correct for energy used to launch corona, obscuration of inner disc (Done & Kubota 2006)
- □ Recover disc temps ~ 0.6
 - 1 keV for 8/12 ULXs
 - Modified disc spectra -~Eddington-rate: big stellar
 BHs or beamed?
 - Truly super-Eddington optically thick coronae

Low temperature discs?

- □ Four sources still possess low temp discs (~0.3 keV) IMBHs?
- But theory predicts key characteristic of super-Eddington accretion is a wind (e.g. Poutanen et al. 2007, King 2008)
- If sufficient material present cool photosphere formed at base of wind - greater effect for higher accretion rate
- ULX sequence explained by increasingly powerful wind

The importance of winds

- Hydrodynamical simulations of extreme accretion rates (M^{*} >> M^{*}_{Edd}) onto stellar-mass black holes - Ohsuga (2006, 2007)
- Extreme wind driven column ~ 3 × 10²⁴ cm² at the poles, much higher elsewhere
- Explains coronae and photospheres, predicts suppressed variability

Suppressed variability seen! Heil, Vaughan & Roberts 2009

ULX bubble nebulae

NGC 1313 X-2 nebula, with Ha in red (Pakull et al. 2006)

Nebulae energetics

- Only viable explanation for nebulae is that they are inflated by mildly-relativistic wind/jets from ULX
- From various studies by M. Pakull (also Roberts et al. 2003)
 - Age ~10⁵ 10⁶ yrs
 - Energy input ~10⁵² 10⁵³ erg
 - Implies L_{mech} ~ L_{rad}
 - BH grows by $\ge 1 M_{\odot}$ in this time (could be much larger, depending on amount of *advection*)

The ultraluminous state at large

- □ Highest L_X obs of GRS 1915 +105, GRO J1655-40 show optically-thick Comptonisation spectra (e.g. Ueda et al. 2009)
- Highest Eddington fraction AGN show similar spectra, albeit shifted to longer wavelengths (Middleton et al. 2009, Jin et al. 2009)
- □ If UL state common to > L_{Edd} objects – so are winds etc.

Optical-UV-X-ray spectrum of RE J1034+396 (Casebeer et al. 2008)

How big are ULX black holes?

Zampieri & Roberts 2009

- Evidence from X-ray spectra, timing - pointing towards small BHs, not 1000 M_o IMBHs
- But reasonable limits at ~ 100
 M_o still larger than seen in
 Galactic BHs
- Possible if BHs formed in lowmetallicity environments!
- Higher rate of ULXs per unit mass already noted for dwarf galaxies (Swartz et al. 2008)
- □ ~30 M_{\odot} BH in dwarf starburst IC 10 (Prestwich et al. 2007)

From Heger et al. (2003)

Hyperluminous X-ray sources (HLXs)

2XMM catalogue detection of $L_{\rm X} >$ $10^{41} \text{ erg s}^{-1} HLX$ in the $d \sim 30 Mpc$ galaxy NGC 470

HLXs best remaining IMBH candidates, $L_{\rm X}$ > 10⁴¹ erg s⁻¹ □ Only ~ 6 known! ESO 243-49 HLX-1 the highest $L_{\rm x}$ (Farrell et al. 2009) | |

But M82 X-1 has cool, thick corona spectrum (Miyawaki et al. 2009)

Properties similar to lower L_{x} ULXs (Sutton, in prep.)

The key observation

- As with Galactic BHs, the ultimate test of the compact object mass in ULXs must be dynamical studies.
- Pilot observations of Chandra/ HST identified counterparts to IMBH-candidate ULXs show broad He II lines
- Obtained ~50 hours of Gemini time to chase radial velocity measurements

Radial velocity variations

Tim Roberts - ULXs

But still some science!

Tues 6th July 2010

Tim Roberts - ULXs

Nature of the counterparts

Tues 6th July 2010

Tim Roberts - ULXs

Conclusions

ULXs – local super-Eddington accretors

- X-ray phenomenology dominated by wind
- Better understanding ULX physics should give insights into QSO growth and feedback
- But maybe not perfect analogy scaling issues?
- Some ULXs may contain modern equivalents of initial SMBH seeds

But spectral fitting is degenerate!

- Alternatives include...
- "Slim" accretion discs (e.g. Watarai et al. 2000)
 - Accretion disc structure changes at highest accretion rates
 - Consistent with some ULX spectra (e.g. Vierdayanti et al. 2006, Mizuno et al. 2007).
- Reflection-dominated, highly relativistic emission from inner edge of accretion disc (Caballero-Garcia & Fabian 2010)
- □ Common thread: high accretion rate, small black holes (M_{BH} < 100 M_☉).

From Caballero-Garcia & Fabian 2010